簡易檢索 / 詳目顯示

研究生: 高慶安
Kao, Ching-An
論文名稱: 熱休克蛋白90抑制劑(AUY-922)對於視網膜感光受器細胞(661W)中非選擇性陽離子電流的活化作用
Activation by AUY-922, an Inhibitor of HSP-90, of Non-Selective Cation Currents in Retinal Photoreceptor-Derived Cells(661W)
指導教授: 吳勝男
Wu, Sheng-Nan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 50
中文關鍵詞: 熱休克蛋白90非選擇性陽離子通道感光受器細胞
外文關鍵詞: NVP-AUY922, heat shock protein-90, non-selective cation channel, photoreceptor cell
相關次數: 點閱:165下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • AUY922(AUY)為近幾年由Vernalis與Novartis兩間藥廠所共同新開發的抗腫瘤藥物,目前已經證實AUY屬於一種強效型的熱休克蛋白90(heat shock protein-90)抑制劑。熱休克蛋白90是細胞內含量豐富的伴隨蛋白(chaperone)之一,對於細胞的存活、增生以及細胞凋亡都是不可或缺的。由於腫瘤細胞存活在極富挑戰的環境下,必須仰賴熱休克蛋白90使其生長並存活,因此,在治療癌症過程中,熱休克蛋白90是一個很重要的標的目標。更重要的是,雖然熱休克蛋白90抑制劑對於各種不同的實質腫瘤(solid tumors)具有不錯的治療潛力,然而,服用AUY後,卻出現一些並不是藉由抑制熱休克蛋白90機制產生的額外影響。換言之,儘管AUY可以強力的抑制熱休克蛋白90,卻也發現有副作用的產生,造成視覺上的毒害(ocular toxicities)就是其中之一。但是,由AUY所引起視覺傷害的詳細機轉,目前所知甚少。因此,在本篇研究中,我們利用AUY及其它相關化合物來探討藥物與感光細胞上離子通道之間的作用。我們利用細胞膜片箝制技術(patch-clamp technique)來評估661W細胞的電生理功能性。結果顯示,在完整細胞模式(whole-cell model),AUY使非選擇性陽離子電流(non-selective [NS] cation current,INS)增加並呈現濃度依賴性的關係,進一步經由公式換算,得知藥物發揮一半效力時的濃度(EC50)為1.7 μM。此二藥物,iberiotoxin (200 nM)及apamin (200 nM)對於AUY誘發的INS沒有造成影響,而氯化鑭(LaCl3 100 μM)可以使其恢復。17-AAG (3 μM) 或 BIIB021 (3 μM)也都可以增加INS。其次,我們藉由將細胞膜處於過極化的電壓階,發現AUY會減緩INS不活化曲線的時間常數。在細胞接連片紀錄(cell-attached recordings)中,AUY可以增加NS陽離子通道的活性但並不會改變此通道的電導。接著藉由給予較長時間的斜坡脈衝式電壓,我們看到AUY導致NS陽離子通道的活化曲線傾向於較不去極化的電位,改變約18毫伏特,且對其曲線的斜率並沒有顯著改變。我們也觀察到AUY會增加NS陽離子通道打開的機率,LaCl3 (100 μM)則會減少,然而BAPTA-AM (10 μM)此藥物也可以增加。另外,AUY(10 μM)並沒有改變L-型鈣離子電流(L-type Ca2+ currents,ICa,L)電流-電壓關係(current-voltage relationship)的情況下,會抑制ICa,L。再利用電流箝制(current-clamp)記錄,也明確指出AUY可以造成細胞去極化的作用。最後,經由文獻的參考,我們進行對661W細胞進行轉染TRPM3 channel (transient receptor potential melastatin-3 channel) siRNA (short interfering RNA)的實驗,明確看到NS陽離子通道活性減少的結果。且AUY誘發的INS與熱休克蛋白90活性無關聯性。因此,AUY是直接與TRPM3交互作用,促使增加INS,接連呈現細胞膜去極化的現象。總而言之,於本篇研究中,證明了在感光受器細胞中,主要產生INS的源頭是NS陽離子通道中的TRPM3 channels。結論是,這些離子通道所共同組成的活化現象,在AUY造成視覺上敏銳度改變的情況中,扮演關鍵性的角色。

    NVP-AUY922 (AUY) is currently recognized as a potent inhibitor of heat shock protein-90 (HSP-90). HSP-90, the most abundant molecular chaperone, is recognized to be essential for cell survival, proliferation, and apoptosis. HSP-90 is an important target for cancer therapeutics because tumor cells exist in a stressful environment and need depend on HSP-90 to grow and survive. Most importantly, the HSP-90 inhibitors such as AUY are thought to have strong therapeutic potential in a wide variety of tumor types, including solid tumors. However, AUY appears to possess an additional effect that does not require inhibition of HSP-90. Despite its inhibitory effect on HSP-90 activity, there are some adverse effects of this compound including ocular toxicities. The precise mechanism of action of AUY-induced ocular damage is still poorly understood. Therefore, in this study, we sought to investigate the possible effects of AUY and other related compounds on ion channels in a photoreceptor cell line (661W). The patch-clamp technique was used to evaluate electrophysiological properties of 661W photoreceptor cells. In whole-cell model, AUY increases the amplitude of non-selective (NS) cation current (INS) in a concentration-dependent fashion with an EC50 value of 1.7 μM. Neither iberiotoxin (200 nM) nor apamin (200 nM) had any effects on AUY-induced INS, while LaCl3 (100 μM) reversed it significantly. 17-AAG (3 μM) or BIIB021 (3 μM) increased the INS amplitude. AUY slowed the time course of INS inactivation elicited by membrane hyperpolarization. In cell-attached recordings, when AUY was applied to the bath, the activity of NS cation channels was significantly elevated with no change in single-channel conductance. With long-lasting ramp pulse protocol, addition of AUY produced a left shift in the activation curve of NS channels by 18 mV, with no change in the slope factor of the curve. The probability of NS-channel openings enhanced by AUY was decreased by LaCl3 (100 μM), while it was increased by BAPTA-AM (10 μM). AUY (10 μM) also suppressed L-type Ca2+ current with no change in the current-voltage relationship of this current. Under current-clamp conditions, addition of AUY caused membrane depolarization. In cells transfected with TRPM3 siRNAs, NS-channel activity was diminished. AUY-mediated stimulation of INS is unlinked to its inhibition of HSP-90 activity. Therefore, AUY interacts directly with the TRPM3 channel to increase INS and subsequently to depolarize the membrane in these cells. Taken together, our results suggested that TRPM3-encoded NS channels are primarily responsible for generation of INS in 661W cells. In conclusion, constitutive activation of these channels may play crucial roles in AUY-induced changes in visual acuity.

    Abbreviation............................III Figure contents.........................IV Abstract in Chines......................1 Abstract................................3 Acknowledgement.........................5 Introduction............................7 Materials and methods...................9 Cell preparations.......................9 RNA Isolation and Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR).......................10 Transfections withTRPM3 siRNAs..........10 Electrophysiological measurements.......11 Data recordings and analysis……….........11 Single-Channel Analyses…................12 Drugs and solutions.....................14 Result..................................16 Stimulatory Effect of AUY on INS in 661W Cells.......16 AUY-Induced Slowing in the Time Course of INS Inactivation........................................ 17 Electric Properties of NS channels Recorded from 661W Cells................................................18 Stimulatory Effect of AUY on NS-Channel Activity in 661W Cells................................................19 Effect of AUY on Voltage-Dependent Activation of NS Channels Measured from 661W Cells.............................20 Effect of AUY on Voltage-Dependent L-Type Ca2+ Current (ICa,L) in 661W Cells................................................21 Effect of AUY on Membrane Potential in 661W Cells....21 NS-Channel Activity in 661W Cells Transfected with or without TRPM3 siRNAs.................................22 Discussion...........................................24 References...........................................29 Figures..............................................34 Figures Legends….....................................44 Appendix.............................................49

    Al-Ubaidi MR, Font RL, Quiambao AB, Keener MJ, Liou GI, Overbeek PA, Baehr W. Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J Cell Biol. 1992; 119:1681-1687.
    de Sevilla Müller LP, Liu J, Solomon A, Rodriguez A, Brecha N. Expression of voltage-gated calcium channel α2δ4 subunits in the mouse and rat retina. J Comp Neurol. 2013; 52:2486-2501.
    Dean DO, Tytell M. Hsp25 and -90 immunoreactivity in the normal rat eye. Invest Ophthalmol Vis Sci. 2001; 42:3031-3040.
    Delgado R, Bacigalupo J. Unitary recordings of TRP and TRPL channels from isolated Drosophila retinal photoreceptor rhabdomeres: activation by light and lipids. J Neurophysiol. 2009; 101:2372-2379.
    Fitzgerald JB, Malykhina AP, Al-Ubaidi MR, Ding XQ. Functional expression of cone cyclic nucleotide-gated channel in cone photoreceptor-derived 661W cells. Adv Exp Med Biol. 2008; 613:327-334.
    Gandhi N, Wild AT, Chettiar ST, Aziz K, Kato Y, Gajula RP, Williams RD, Cades JA, Annadanam A, Song D, Zhang Y, Hales RK, Herman JM, Armour E, Deweese TL, Schaeffer EM, Tran PT. Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells. Cancer Biol Ther. 2013; 14;347-356.
    Gillan V, O’Neill K, Maitiand K, Sverdrup FM, Devaney E. A repurposing strategy for Hsp90 inhibitors demonstrates their potency against filiarial nematodes. PLoS Negl Trop Dis 2014;8:e2699.
    Grimm C, Kraft R, Sauerbruch S, Schultz G, Harteneck C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem. 2003; 278:21493-21501.
    Hardie RC, Minke B. Calcium-dependent inactivation of light-sensitive channels in Drosophila photoreceptors. J Gen Physiol. 1994; 103:409-427.
    Hsueh YS, Yen CC, Shih NY, Chiang NJ, Li CF, Chen LT. Autophagy is involved in endogenous and NVP-AUY922-induced KIT degradation in gastrointestinal stromal tumors. Autophagy. 2013; 9:220-233.
    Kemmer G, Keller S. Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protocols. 2010; 5:267-281.
    Križaj D. Calcium stores in vertebrate photoreceptors. Adv Exp Med Biol. 2012; 740:873-889.
    Kunze D, Sinkins WG, Vaca L, Schilling WP. Properties of single Drosophila Trpl channels expressed in Sf9 insect cells. Am J Physiol. 1997; 272:C27-34.
    Lamottke B, Kaiser M, Mieth M, Heider U, Gao Z, Nikolova Z, Jensen MR, Sterz J, von Metzler I, Sezer O. The novel, orally bioavailable HSP90 inhibitor NVP-HSP990 induces cell cycle arrest and apoptosis in multiple myeloma cells and acts synergistically with melphalan by increased cleavage of caspases. Eur J Maematol. 2012; 88:406-415.
    Lev S, Katz B, Minke B. The activity of the TRP-like channel depends on its expression system. Channels. 2012; 6:86-93.
    Lo YK, Wu SN, Lee CT, Li HF, Chiang HT. Characterization of action potential waveform-evoked L-type calcium currents in pituitary GH3 cells. Pflügers Arch. 2001; 442:547-557.
    Montell C. Drosophila visual transduction. Trends Neurosci. 2012; 35:356-363.
    Montell C. TRP channels in Drosophila photoreceptor cells. J Physiol. 2005; 567.1:45-51.
    Morgans CW, Bayley PR, Oesch NW, Ren G, Akileswaran L, Taylor WR. Photoreceptor calcium channels: insight from night blindness. Vis Neurosci. 2005; 22:5610568.
    Parnas M, Katz B, Lev S, Tzarfaty V, Dadon D, Gordon-Shaag A, Metzner H, Yaka R, Minke B. Membrane lipid modulations remove divalent open channel block from TRP-like and NMDA channels. J Neurosci. 2009; 29:2371-83.
    Parnas M, Katz B, Minke B. Open channel block by Ca2+ underlies the voltage dependence of Drosophila TRPL channel. J Gen Physiol. 2007; 129:17-28.
    Pazo Cid RA, Antón A. Advanced HER2-positive gastric cancer: Current and future targeted therapies. Crit Rev Oncol Hematol. 2013; 85:350-362.
    Sheedlo HJ, Bartosh TJ, Wang Z, Srinivasan B, Brun-Zinkernagel AM, Roque RS. RPE-derived factors modulate photoreceptor differentiation: a possible role in the retinal stem cell niche. In Vitro Cell Dev Biol. 2007; 43:361-370.
    Sheu SJ, Wu SN. Mechanism of inhibitory actions of oxidizing agents on calcium-activated potassium current in cultured pigment epithelial cells of the human retina. Invest Ophthalmol Vis Sci. 2003; 44:1237-1244.
    Shi L, Ko ML, Abbott LC, Ko GYP. Identification of peptide Lv, a novel putative neuropeptide that regulates the expression of L-type voltage-gated calcium channels in photoreceptors. PLoS One. 2012; 7:e43091.
    Straub I, Krűgel U, Mohr F, Teichert J, Rizun O, Konrad M, Oberwinkler J, Schaefer M. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol Pharmacol. 2013; 84:736-750.
    Sung RJ, Wu SN, Wu JS, Chang HD, Luo CH. Electrophysiological mechanisms of ventricular arrhythmias in relation to Andersen-Tawil syndrome under conditions of reduced IK1: a simulation study. Am J Physiol Heart Circ Physiol. 2006; 291:H2597-2605.
    Taddei M, Ferrini S, Giannotti L, Corsi M, Manetti F, Giannini G, Vesci L, Milazzo FM, Alloatti D, Guglielmi MB, Castorina M, Cervoni ML, Barbarino M, Foderà R, Carollo V, Pisano C, Armaroli S, Cabri W. Synthesis and evaluation of new hsp90 inhibitors based on a 1,4,5-trisubstituted 1,2,3-triazole scaffold. J Med Chem. 2014;57:2258-2274.
    Taldone, T., Gozman, A., Maharaj, R., Chiosis, G. Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol. 2008; 8:370-374.
    Tan E, Ding XQ, Saadi A, Agarwal N, Naash MI, Al-Ubaidi MR. Expression of cone- photoreceptor-specific antigens in a cell line derived from retinal tumors in transgenic mice. Invest Ophthalmol Vis Sci. 2004; 45:764-768.
    Tsuruma K, Tanaka Y, Shimazawa M, Mashima Y, Hara H. Unoprostone reduces oxidative stress- and light-induced retinal cell death, and phagocytotic dysfunction, by activating BK channels. Mol Vision. 2011; 17:3556-3565.
    Ueno T, Tsukuda K, Toyooka S, Ando M, Takaoka M, Soh J, Asano H, Maki Y, Muraoka T, Tanaka N, Shien K, Furukawa M, Yamatsuji T, Kiura K, Naomoto Y, Miyoshi S. Strong anti-tumor effect of NVP-AUY922, a novel Hsp90 inhibitor, on non-small cell lung cancer. Lung Cancer. 2012; 76:26-31.
    Walsby EJ, Lazenby M, Pepper CJ, Knapper S, Burnett AK. The HSP90 inhibitor NVP-AUY922-AG inhibits the PI3K and IKK signalling pathways and synergizes with cytarabine in acute myeloid leukaemia cells. Br J Haematol. 2013; 161:57-67.
    Wu SN, Li HF, Chiang HT. Stimulatory effects of -hexachlorocyclohexane on Ca2+-activated K+ currents in GH3 lactrotrophs. Mol Pharmacol. 2000; 57:865-874.
    Wycisk KA, Zeitz C, Feil S, Wittmer M, Forster U, Neidhardt J, Wissinger B, Zrenner E, Wilke R, Kohl S, Berger W. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am J Hum Genet. 2006; 79:973-977.
    Yin X, Zhang H, Lundgren K, Wilson L, Burrows F, Shores CG. BIIB021, a novel Hsp90 inhibitor, sensitizes head and neck squamous cell carcinoma to radiotherapy. Int J Cancer. 2010; 126:1216-1225.
    Zhou D, Liu Y, Ye J, Ying W, Ogawa LS, Inoue T, Tatsuta N, Wada Y, Koya K, Huang Q, Bates RC, Sonderfan AJ. A rat retinal damage model predicts for potential clinical visual disturbances induced by Hsp90 inhibitors. Toxicol Appl Pharmacol. 2013; 273:401-409.
    Zimmer S, Trost C, Wissenbach U, Philipp S, Freichel M, Flockerzi V, Cavalié A. Modulation of recombinant transient-receptor-potential-like (TRPL) channels by cytosolic Ca2+. Pflugers Arch. 2000; 440:409-417.
    Zitzmann K, Ailer G, Vlotides G, Spoettl G, Mauer J, Göke B, Beuschlein F, Auernhammer CJ. Potent antitumor activity of the novel HSP90 inhibitors AUY922 and HSP990 in neuroendocrine carcinoid cells. Int J Oncol. 2013; 43:1824-1832.

    下載圖示
    校外:立即公開
    QR CODE