簡易檢索 / 詳目顯示

研究生: 顏伯穎
Yen, Po-Ying
論文名稱: 應用數值方法模擬水下空氣注入法整治受非水相液污染區域之研究
Numerical Simulation for the Removal of NAPL Contamination by using Air Sparging Technology
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 84
中文關鍵詞: 氣體萃取法水下空氣注入法非水相液
外文關鍵詞: soil vapor extraction, air sparging, NAPLs
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   有關土壤及地下水中油品洩漏之污染問題,水下空氣注入法(Air Sparging)是藉由揮發和生物降解等作用,將此類污染能有效整治的重要技術。本研究主要是利用T2VOC模式來模擬水下空氣注入法(Air Sparging)結合氣體萃取法(Soil Vapor Extraction,簡稱SVE)整治受非水相液(NAPLs)污染區域之成效與分析。利用模式分析主因在於整治作用機制沒有解析解可應用分析,故其真正成效亦較難分析。在模擬過程必須輸入詳盡之地層參數資料,才能真切的表示氣體流動狀態。
      模擬結果顯示:(1)在均質含水層敏感度分析中,飽和透水係數Ks越大整體有效移除效率較快;而在孔隙率不同情況下,發現孔隙率越小整體有效移除效率也較快。(2)在異質含水層中,氣體行徑分佈無法直接通過黏土層,吹氣開孔深度在阻水層上方和下方,經過一年整治只有約28(%)之污染量被移除。(3)透水性質較差之阻水層,水下空氣注入法較不適用。(4) 而應用本模式於LLNL Site300整治案例,在為期5年之整治中,模擬結果與現地監測資料之濃度變化,除整治1年至2.5年間有差異外,其餘時段兩者濃度變化甚為接近,顯示對砂層地層之水下空氣注入法污染整治預測上,本模式有其適用性。

      Air Sparging is an innovative remediation technique that utlize volatization and degradation to remediate petroleum spills problems. This paper mainly uses T2VOC code to simulate Air Sparging and Soil Vapor Extraction(AS/SVE) technique for the removal of NAPLs Contamination and discuss its results. The reason of using numerical simulation is the mechanism of Air Sparging can’t be well-predicted by closed-form equations.
      In the process of simulations, the results show when the saturated hydraulic conductivity of the aquifer is too small, such as clay layers, this air sparging technique would be hardly executed. In the sensitivity analytical process of homogeneous aquifers, the bigger hydraulic conductivity and smaller porosity could get more faster removal efficiency. However,in the heterogeneous aquifers, the airfolw can’t get through the clay layer directly. No matter what the air injection screen was set above or below the clay ,there is about 28% of TCE that could be taken away after one year cleaned.
      Finally, we apply this model to a real remedial case at LLNL Site300.In such case, during 5 years of remedial duration, the simulating results are similar to those from monitoring data except the period of 1 to 2.5years. This indicates that this model is suitable to be a reference of predicting the remediation efficiency .

    第一章 緒論 1   1-1 前言及研究目的 1   1-2 前人研究與背景 2   1-3 研究方法流程與目的 7 第二章 溶質多相傳輸相關理論 9   2-1 前言 9   2-2 溶質多相傳輸的物理機制 9   2-3 溶質多相傳輸之連續方程式 14 第三章 數值模式之建立 19   3-1 T2VOC模式之控制方程式 19   3-2 T2VOC模式之數值方法 25 第四章 敏感性分析 29   4-1 前言 29   4-2 三氯乙烯在均質等向性含水層 31     4-2-1 三氯乙烯在均質等向性含水層模擬結果 31     4-2-2 水力參數敏感性分析 37       4-2-2-1 飽和透水係數 38       4-2-2-2 孔隙率 44     4-2-3 注氣井位與注氣流量之敏感度分析 47       4-2-3-1 注氣井開孔深度 48       4-2-3-2 注氣穩態流量 53   4-3 三氯乙烯(TCE)在異質等向性含水層 57   4-4 二甲苯(o-xylene)在均質等向性含水層 64 第五章 現場案例模擬 67   5-1 前言 67   5-2 研究區概述 67   5-3 現場案例之模擬 70 第六章 結論與建議 77   6-1 結論 77   6-2 建議 78 參考文獻 80

    1.Brown, R. A. and F. Jasiulewicz,”Air Sparging: A new model for remediation.“ Pollution Engineering. July, pp.52-55, 1992.

    2.Delhomme, J. P., ”Spatial variability and uncertainty in groundwater flow parameters:a geostatistical approach“, Water Resour. Res., Vol. 15, NO. 2, page 269-280, 1979.

    3.Falta, R. W., K. Pruess, S. Finsterle, and A. Battistelli. ”T2VOC User’s Guide.” Lawrence Berkeley Lab. Rep. LBL-36400 UC-400, Berkeley, CA. 1995.

    4.Felten, D. W., Leahy, M., Bealer, L., and Kline,B.A.,”Case study: Site remediation using air sparging and soil vapor extraction.”,In: Proceedings of the Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection,and Restoration Conference, National Ground Water Assoc., Dublin, OH. pp.395-411,1992.

    5.Gelhar, L. W., ”Stochastic Subsurface Hydrology”, A Simon and Schuster company, page 26-30,page 333,1993。

    6.Holzbecher, E., Numerische Modeling von Dichteströmungen imporösen Media, Mitt. 117, Tech. Univ. Berlin, Berlin, 1991.

    7.Ji, W., A. Dahmani, D. P. Ahlfeld, J. D. Lin, and E. Hill. “Laboratory study of air sparging: Air flow visualization.” Ground Water Monitoring and Remediation. vol. 13, no.4, pp.115-126, 1993.

    8.Kipp, K. L., HST3D:A computer code for simulation of heat and solute transport in 3-D ground-water flow system , U.S. Geol. Surv. Water Resour. Invest., 86-4095, 1986.

    9.Loden, M.E.,” A Technology Assessment of Soil Vapor Extraction and Air Sparging.” U.S. EPA/600/R-92/173, U.S. EPA Office of Research and Development, Washington, DC., 1992.

    10.Lundegard, P. D. and LaBrecque, D. “Air parging in Sandy Aquifer (Florence,Oregon) : Actual and Apparent Radius of Influence.” Journal of Contaminant Hydrology, vol. 19, pp.1-27, 1995.

    11.Marulanda, C., Culligan, P. J., and Germaine, J. T.,”Centrifuge Modeling of Air Sparging – a Study of Air Flow Through Saturated Porous Media.”,Journal of Hazardous Materials, vol. 72, pp. 179-215, 2000.

    12.McCray, J. E. “Mathematical modeling of air sparging for subsurface remediation : state of the art.” Journal of Hazardous Matherials. vol.72, pp. 237-263, 2000.

    13.McCray, J. E. and R. W. Falta. “Defining the air sparging radius of influence for groundwater remediation.” Journal of Contaminant Hydrology. vol. 24, pp.25-52, 1996

    14.McCray, J. E. and R. W. Falta. “Numerical simulation of air sparging for remediation of NAPL contamination.” Ground Water. vol.35, no.1, pp.99-110, 1997.

    15.Neuman, S.P. and S. Orr, “Prediction of Steady-State Flow in Nonuniform Geologic Media by Conditional Moments - Exact Nonlocal Formalism, Effective Conductivities, and Weak Approximation”, Water Resour. Res.,Vol. 29,NO. 2, page 341-364,1993.

    16.Neuman, S.P., and Zhang,Y. Z., ” A quasi-linear theory of non-Fickian and Fickian subsurface dispersion. 1. Theoretical analysis with application to isotropic media.”, Water Resour. Res., vol.26, no.5, pp.887-902,1990.

    17.Nyer, E. K. and S. A. Sutherson., ” Air sparging: Savior of groundwater Remediation or just blowing bubbles in the bath tub? ”, Ground Water Monitoring and Remediation. vol. 13, no.4, pp.87-91, 1993

    18.Oldenburg, C. M. and K. Pruess, “Dispersive transport dynamics in a strongly coupled groundwater-brine flow system”, Water Resour. Res.,vol. 31,no. 2, pp. 289-302,1995.

    19.Parker, J.C., R.J. Lenhard, and T. Kuppusamy.“A parametric model for constitutive properties governing multiphase flow in porous media.” Water Resour. Res. vol. 23, no. 4, pp. 618-624, 1987.

    20.Pruess, K., C. Oldenburg, and G. Moridis. ”TOUGH2 User’s Guide,Version 2.0.” Lawrence Berkeley Lab. Rep. LBL-43134 UC-400, Berkeley, CA. 1999.

    21.Reddy, K.R., and Adams, J.A., “Effect of Groundwater Flow on Remediation of Dissolved-phase VOC Contamination Using Air Sparging.”, Journal of Hazardous Materials, vol. 72, pp. 147-165, 2000.

    22.Reeves, M., D. S. Ward, N. D. Johns, and R. M. Cranwell, Theory and implementation of SWIFT II, the Sandia waste-isolation flow and transport model for fractured media, Rep. SAND83-1159 , Sandia Natl. Lab., Albuquerque, N. M., 1986.

    23.Thomson, N.R.,and Johnson, R.L.,”Air distribution during in situ air sparging: an overview of mathematical modeling.”, Journal of Hazardous Materials, vol. 72, pp. 265-282, 2000.

    24.U. S. EPA, ”National Impoundment Assessment DRASTIC : A Standard System for Evaluating Groundwater Pollution Potential Using Hydro-geological Setting, “ U. S. EPA, May (1985).

    25.U.S. Department of Energy(1997), Cost and Performance Report for the General Services Area Operable Unit Lawrence Livermore National Laboratory Site 300, Lawrence Livermore National Laboratory, Livermore, CA (UCRL-AR-128479).

    26.van Dijke, M.I.J. “Multi-phase flow modeling of air sparging.” Advances in Water Resources. vol. 18, no. 6, pp. 319-333, 1995.

    27.van Dijke, M.I.J., and van der Zee, S.E.A.T.M. “Modeling of Air Sparging in a Layered Soil : Numerical and Analytical approximations.” Journal of Geophysical Research, vol. 34, no.3, pp.341-353, 1998.

    28.van Genuchten, M. T. “A closed form equation for predicting the hydraulic Conductivity of unsaturated soils.” Soil Sci. Soc.Am. J. 44, pp. 892-898, 1980.

    29.Voss, C. I., A Finite Element Simulation Model for Saturated-Unsaturated Fluid-Density-Dependent Groundwater Flow with Energy Transport of Chemically-Reactive Single-Species Solute Transport, U.S.G.S. Water Resources Investigations Report 84-4369, 1984.

    30.Wu, Y. S. and K. Pruess, A numerical method for simulating non-Newtonian fluid flow and displacement in porous media, Advances in Water Resources, vol.21, no. 5, page 351-362, 1998.

    31.潘建邦,”未飽和層溶質傳輸變異性之研究”,成功大學資源工程系碩士論文,1994。

    32.黃崇琅,”大尺度異質含水層溶質傳輸現象之研究”,成功大學資源工程系碩士論文,1998。

    33.楊裕堅,”有機污染物在土壤顆粒中之平衡與傳輸”,成功大學環境工程學系碩士論文,1998。

    34.周業泗,”飽和及未飽和地層傳輸行為之研究-以嘉義白水湖、蘭嶼貯存場為例”,成功大學資源工程系碩士論文,1999。

    35.董天行,” 三氯乙烯污染地下水相關清除困難之研究”, 中央大學應用地質系碩士論文,1999。

    36.黃柏清,”探討異質性土壤對飽和及未飽和地層傳輸行為之影響”,成功大學資源工程系碩士論文2000。

    37.陳冠志,”異質性土壤中二相流及溶質傳輸行為之研究”,成功大學資源工程系碩士論文,2001。

    38.任鈺鈴,” 潛在暴露於含氯碳氫化合物污染地下水與居民下一代早產之研究”,台灣大學職業醫學與工業衛生所碩士論文,2001。

    39.葉義章,”飽和及未飽和層地下水流動對其溶質傳輸影響之研究-以核研所試驗場為例”,成功大學資源工程系博士論文,2001。

    40.蔡易縉,”氣提法地下水整治氣體流動路徑之研究-示蹤技術之應用”,成功大學資源工程系博士論文,2001。

    下載圖示 校內:立即公開
    校外:2002-08-05公開
    QR CODE