| 研究生: |
卓郁唯 Cho, Yuh-Wei |
|---|---|
| 論文名稱: |
以共濺鍍法製備富鋅氧化銦鎵鋅通道層改善增強型薄膜電晶體之電特性 Electrical Characteristic Enhancement of the Thin-Film Transistors with a Co-Sputtered Zinc-Rich InGaZnO Channel |
| 指導教授: |
莊文魁
Chuang, Wen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 磁控共濺鍍 、氧化鉿鋯 、氧化銦鎵鋅 、氧化鋅 、薄膜電晶體 |
| 外文關鍵詞: | RF magnetron co-sputtering system, HfZrO2, IGZO, ZnO, Thin Film Transistor (TFT) |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用射頻磁控共濺鍍系統,開發鋅摻雜氧化銦鎵鋅主動層之薄膜電晶體,成功改善介面品質及元件電特性,有助於未來平面顯示器應用及發展。
本論文分為兩部分,首先致力於提升閘極氧化層絕緣能力,藉由二氧化鉿與二氧化鋯共濺鍍製備氧化鉿鋯作閘極介電層,改善薄膜界面品質,有效減少介電層/主動層界面缺陷密度,並透過沉積後退火製程,優化薄膜品質,與單層二氧化鉿及單層二氧化鋯相比,元件特性有顯著提升,因此氧化鉿鋯更適合作氧化銦鎵鋅通道之介電層;第二部分為改善氧化銦鎵鋅薄膜濃度過高導致過多氧空缺進而影響元件特性之問題,利用共濺鍍技術將氧化鋅與氧化銦鎵鋅共沉積,藉由調變氧化鋅濺鍍功率,探討薄膜內鋅比例對元件之影響,並透過退火溫度調變,有效修復缺陷密度,改善薄膜品質。
結果顯示,氧化鋅濺鍍功率設定60W、在氮氣環境下退火300oC時,元件有最佳操作特性,其臨介電壓為0.51 V、載子遷移率為14.3 cm2V-1s-1、次臨介擺幅為0.136 V/dec、電流開關比為1.03×107、界面缺陷密度為2.73×1012 cm-2eV-1。,綜合以上實驗結果與本論文目的相符,因此本研究成功開發新穎主動層材料,期望有助於未來平面顯示器應用及發展。
In this paper, the RF magnetron co-sputtering system is used to develop a thin film transistor with zinc-doped indium gallium zinc oxide active layer, which successfully improves the interface quality and component electrical characteristics, and is helpful for the future application and development of flat panel displays.
This thesis is divided into two parts. Firstly, it is devoted to improving the insulation of the gate oxide layer. The hafnium-zirconium oxide is prepared by co-sputtering as a gate dielectric layer to improve the interfacial quality of the film by effectively reducing the dielectric layer/active layer interfacial defect density. Through the post-deposition annealing process, the film quality is optimized, compared with single-layer hafnium dioxide and single-layer zirconium dioxide, the component characteristics are significantly improved. Secondly, the device characteristics are beneficially dependent on the concentration of the excessive oxygen vacancies in the indium gallium zinc oxide film. Specifically, ZnO co-doped IGZO is prepared by varying the sputtering power of zinc oxide in order to study the role of zinc ratio. Different annealing temperatures are also implemented to effectively improve the film quality by reducing the defect density.
The results show that when the zinc oxide sputtering power is set at 60W and the annealing is performed at 300oC in a nitrogen atmosphere, the optimal device electric characteristics are obtained; namely, the threshold voltage is 0.51 V, carrier mobility is 14.3 cm2V1s1, subthreshold swing is 0.136 V/dec, Ion/Ioff current ratio is 1.03×107 and the interface defect density is 2.73×1012 cm2eV1. The results of the study on the novel active layer materials obtained are expected to find a unique application in the future development of flat panel displays.
[1] L.L. Zheng, Q. Ma, Y. H. Wang, W. J. Liu, S. J. Ding, and D. W. Zhang, “High-Performance Unannealed a-InGaZnO TFT With an Atomic-Layer-Deposited SiO2 Insulator,” IEEE Electron Device Lett. vol. 37, pp. 743-746, 2016.
[2] H. Hosono, “Recent progress in transparent oxide semiconductors: Materials and device application,” Thin Solid Films, vol. 515, no. 15, pp. 6000-6014, 2007.
[3] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of Non-Crystalline Solids, vol. 352, no. 9, pp. 851-858, 2006.
[4] Y. C. Kim, J. Kanicki, and H. Lee, Member, “An a-InGaZnO TFT Pixel Circuit Compensating Threshold Voltage and Mobility Variations in AMOLEDs,” Journal of Display Technology, vol. 10, no. 5, pp. 402-406, 2014.
[5] Y. H. Lin and J. C. Chou, “Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials,” Journal of Nanomaterials, 2015.
[6] M. K. Lee, C. K. Kim, J. W. Park, E. Kim, M. L. Seol, J. Y. Park, Y. K. Choi, S. H. K. Park, K. C. Choi, IEEE Trans. Electron Devices, vol. 64, no. 8, pp. 3189-3192, 2017.
[7] S. B. Ogale, Thin films and hetero structures for oxide for oxide electronics, New York, NY: Springer, 2005.
[8] T. Kamiya and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Materials, vol. 2, pp. 15-20, 2010.
[9] T. C. Fung, C. S. Chuang, K. Nomura, H. P. D. Shieh, H. Hosono, and J. Kanicki, “Photofield-effect in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors,” Journal of Information Display, vol. 9, no. 4, pp. 21-29, 2008.
[10] M. Furuta, D. Koretomo, Y. Magari, S. G. Mehadi, Aman, R. Higashi, and S. Hamada, “Heterojunction channel engineering to enhance performance and reliability of amorphous In–Ga–Zn–O thin-film transistors,” Japanese Journal of Applied Physics, vol. 58, no. 9, pp. 41-49, 2019.
[11] M. D. H. Chowdhury, P. Migliorato, and J. Jang, “Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors,” Applied Physics Letters, vol. 97, no. 17, pp. 173506, 2010.
[12] C. H. Hung, S. J. Wang, P. Y. Liu, C. H. Wu, H. P. Yan, N. S. Wu, T. H. Lin, “Improving the electrical and hysteresis performance of amorphous igzo thin-film transistors using co-sputtered zirconium silicon oxide gate dielectrics,” Materials Science in Semiconductor Processing, vol. 67, pp. 84-91, 2017.
[13] Z. Zheng, Y. Zeng, R. Yao, Z. Fang, H. Zhang, S. Hu, X. Li, H. Ning, J. Peng, W. Xie and X. Lu, “All-sputtered, flexible, bottom-gate IGZO/Al2O3 bi-layer thin film transistors on PEN fabricated by a fully room temperature process,” Journal of Materials Chemistry C, vol. 5, no. 28, pp. 7043-7050, 2017.
[14] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5275,2001
[15] J. Robertson and R.M. Wallace, “High-k materials and metal gates for CMOS applications,” Materials Science and Engineering: R: Reports, vol. 88, pp. 1-41, 2015.
[16] B. Cheng, M. Cao, R. Rao, A. Inani, P. Vande Voorde, W.M. Greene, J.M.C. Stork, Z. Yu, P.M. Zeitzoff, and J.C.S. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
[17] T. M. Pan, F. H. Chen and M. N. Hun, “Effect of annealing temperature on structural and electrical properties of high-k YbTixOy gate dielectrics for InGaZnO thin film transistors,” Semiconductor Science and Technology, vol. 30, no. 1, pp. 015004, 2015.
[18] V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Applied physics letters, vol. 89, no. 6, pp. 3256-3269, 2001.
[19] H. Chakraborty and D. Misra, “Characterization of High- Gate Dielectrics using MOS Capacitors,” International Journal of Scientific and Research Publications, vol. 3, no. 12, pp. 1-5, 2013.
[20] X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Physical Review B, vol. 65, no. 23, Artical ID 233106, 2002.
[21] R. Yao, Z. Zheng, M. Xiong, X. Zhang, X. Li, H. Ning, Z. Fang, W. Xie, X. Lu, and J. Peng, “Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors,” Applied Physics Letters, vol. 112, no. 10, pp. 103503, 2018.
[22] S. Zhou, Z. Fang, H. Ning, W. Cai, Z. Zhu, J. Wei, X. Lu, W. Yuan, R. Yao and J. Peng, “Bias Stability Enhancement in Thin-Film Transistor with a Solution-Processed ZrO2 Dielectric as Gate Insulator,” Applied Sciences-Basel, vol. 8, no. 5, pp. 1-13, 2018.
[23] E. Wang, X. Wu, “Development of new conjugated polymers for field effect transistors,” 2015
[24] Y. Takeda, S. Kobayashi, S. Murashige, K. Ito, I. Ishida, S. Nakajima, H. Matsukizono, N. Makita, “Development of high mobility top gate IGZO-TFT for OLED display,” SID Digest, pp. 516-519, 2019.
[25] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radik, “High-Mobility Polymer Gate Dielectric Pentacene Thin Film Transistors,” J. Appl. Phys. vol. 92, no. 9, pp. 5259-5263, 2002.
[26] W. Zhong, G. Li, L. Lan, B. Li and R. Chen, “Effects of annealing temperature on properties of InSnZnO thin film transistors prepared by Co- sputtering,” RSC Adv, vol. 8, no. 61, pp. 34817–34822, 2018.
[27] S. D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs, TFT Consultant, Forest Row, E. Sussex, UK, pp. 63-64, 2013.
[28] Ortiz-Conde, F. J. Garcı́a Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, “A review of recent MOSFET threshold voltage extraction methods,” Microelectronics Reliability, vol. 42, no. 4-5, pp. 583-596, 2002.
[29] J. H. Park, K. Jeon, S. Lee, S. Kim, S. Kim, I. Song, C. J. Kim, J. Park, Y. Park, D. M. Kim, and D. H. Kim, “Extraction of density of states in amorphous GaInZnO thin-film transistors by combining an optical charge pumping and capacitance–voltage characteristics,” IEEE Electron Device Letters, vol. 29, no. 12, pp. 1292-1295, 2008.
[30] Wong HS, White MH, Krutsick TJ, and Booth RV. “Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFET’s,” Solid-State Electron, vol. 30, pp. 953, 1987.
[31] Jain S. “Measurement of threshold voltage and channel length of submicron MOSFETs,” IEEE Proc Cir Dev Syst, pp. 135-162, 1988.
[32] D. K. Schroder, Semiconductor material and device characterization, 2nd edition, Wiley, New York, pp. 367-369, 1998.
[33] S. J. Yun, J. B. Koo, J. W. Lim, and S. H. Kim, “Pentacene-Thin Film Transistors with ZrO2 Gate Dielectric Layers Deposited by Plasma-Enhanced Atomic Layer Deposition,” Electrochemical and Solid-state Letters, vol. 10, no. 3, pp. H90-H93, 2007.
[34] E. S. Yang, “Microelectronic Devices,” McGraw-Hill, Singapore, 1988.
[35] A. C. Tickle, “Thin-Film Transistors - A New Approach to Microelectronics,” Wiley, New York, 1969.
[36] S. D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs, TFT Consultant, Forest Row, E. Sussex, UK, pp. 63-64, 2013.
[37] K. Terada, K. Nishiyama, and K. I. Hatanaka., “Comparison of MOSFET-threshold-voltage extraction methods,” Solid- State Electron, vol. 45, pp. 35-40, 2001.
[38] David Vernon Morgan, Kamel D. and Al-Baidhawi, “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon,” IEEE, vol. 27, pp. 606-608, 1980.
[39] Goetzberger, E. Klausmann, and M. J. Schulz, “Interface states on semiconductor/insulator interface surfaces,” Critical Reviews in Solid State and Material Sciences, vol. 6, no. 1, pp. 1-43, 1976.
[40] R. R. Thakur and P. Singh, “Performance reliability of ultra-thin Si-SiO2, Si-Al2O3, Si-ZrO2 and Si-HfO2 interface in rectangular steep retrograded nano-regimes devices,” Microelectronics Reliability, vol. 96, pp. 21-28, 2019.
[41] K. Satoh, Y. Yamada, Y. Kanaoka, S. Murakami, Y. Kakehi, and Y. Sakurai, “Investigation on the gate insulator thickness dependence of ZnO–SnO2 thin film transistors,” Japanese Journal of Applied Physics, vol. 58, no. 3, pp. 038004, 2019.
[42] M. Ochi, A. Hino, H. Goto, K. Hayashi, and T. Kugimiya, “Electrical Characterization of Zinc-Rich Amorphous In-Ga-Zn-O Thin Film Transistors,” Phys. Status Solidi A, vol. 215, no. 21, pp. 180085, 2018.
[43] N. Tiwari, R. N. Chauhan, P. T. Liu and H. P. D. Shieh, “Electrical characteristics of InGaZnO thin film transistor prepared by co-sputtering dual InGaZnO and ZnO targets,” RSC Adv, vol. 5, pp. 51983-51989, 2015.
[44] T. Takahashi, T. Hoga, R. Miyanaga, K. Oikawa, M. N. Fujii, Y. Ishikawa, Y. Uraoka, and K. Uchiyama, “Improvement of Amorphous InGaZnO Thin-Film Transistor Using High-k SrTa2O6 as Gate Insulator Deposited by Sputtering Method,” Phys. Status Solidi A, vol. 216, no. 5, pp. 17007733, 2019.
[45] S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, “Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor,” Applied Physics Letters, vol. 98, no. 12, pp. 122105, 2011.
[46] D. G. Yang, H. D. Kim, J. H. Kim, S. W. Lee, J. Park, Y. J. Kim, H. S. Kim, “The effect of sputter growth conditions on the charge transport and stability of In-Ga-Zn-O semiconductors,” Thin Solid Films, vol. 638, pp. 361-366, 2017.
[47] S. M. Yoon, N. J. Seong, K. Choi, G. H. Seo, and W. C. Shin, “Effects of Deposition Temperature on the Device Characteristics of Oxide Thin-Film Transistors Using In−Ga−Zn−O Active Channels Prepared by Atomic-Layer Deposition,” ACS Applied Materials & Interfaces, vol. 9, no. 27, pp. 22676-22684, 2017.
[48] J. Q. Song, L. X. Qian and P. T. Lai, “Improved Performance of Amorphous InGaZnO Thin-Film Transistor by Hf Incorporation in La2O3 Gate Dielectric,” IEEE Transactions on Device and Materials Reliability, vol. 18, no. 3, 2018.
[49] J. Raja, K. Jang, N. Balaji, W. Choi, T. T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Applied Physics Letters, vol. 102, no. 8, pp. 083505, 2013.
[50] H. Ning, Y. Zeng, Z. Zheng, H. Zhang, Z. Fang, R. Yao, S. Hu, X. Li, J. Peng, W. Xie, and X. Lu, “Facile Room Temperature Routes to Improve Performance of IGZO Thin-Film Transistors by an Ultrathin Al2O3 Passivation Layer,” IEEE Transactions on Electron Devices, vol. 65, no. 2, pp. 537-541, 2018.