| 研究生: |
黃柏齊 Huang, Po-Chit |
|---|---|
| 論文名稱: |
具有粗糙表面的傾斜加熱板在自然對流中之影響 Effects of surface roughness on natural convection flow above an inclined heating plate |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 自然通風 、人工粗糙度 、熱傳 、體積流率 |
| 外文關鍵詞: | Natural ventilation, Artificial roughness, Heat transfer, Volume flow rate |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討自然通風系統中吸收板表面構型對於管道內部流場以及溫度場的影響,比較於一般傳統的平板構型,本研究在吸收板表面加裝了不同型式的肋條,並利用數值模擬計算來求解肋條周圍的速度以及溫度變化,分析不同位置的肋條以及周圍區域在熱傳分布上的趨勢。而在自然對流的條件下,肋條的表面形狀對於熱傳以及管道內部流阻的影響很大,因此先討論不同截面形狀(矩形、弓形、V形)的肋條在相同擺放間距以及肋條高度下的流場差異,再針對V形肋條的高度以及擺放間距對出口流量的影響做詳細探討,從結果觀察到增加多餘表面積以及肋條高度消耗掉管內過多流體動能且造成流場阻塞現象,因此對於肋條管道而言,並非增加肋條數量以及表面積就能達到提升出口流量的成效,需要考慮到肋條之間流場的相互影響,而在固定管道高度(H = 50 mm)的條件下,肋條高度比(e/H = 0.1)以及擺放間距(p/e = 3)的V形肋條增加最多出口流量。
In this article, a numerical investigation is conducted to analyze the three-dimensional incompressible Navier-Stokes flows through the artificially roughened absorber plates in ventilation ducts. Several types of cross section(rectangle、arciform and equilateral triangle )and different configurations of selected ribs(e/H = 0.06 - 0.2 and p/e = 1 - 7)have been used as roughness elements. The governing equations are solved with a finite-volume-based numerical method. The commercial finite-volume based CFD code ANSYS FLUENT is used to simulate airflow through artificially roughened absorber plates in ventilation ducts. It was found that equilateral triangular ribs give the better heat transfer augmentation than rectangular one. The induced air flow rate was evaluated in all range of parameters investigated and results suggested that induced flow rate in ducts with equilateral triangular ribs correspond to relative roughness height(e/H)of 0.1 and relative roughness pitch (p/e) of 3 is about 15.2 % higher as compared to smooth ducts.
[1] ANSYS Inc., ICEM User’s Guide, 13th ed, 2010.
[2] ANSYS Inc., FLUENT User’s Guide, 13th ed, 2010.
[3] Adrian Bejan, Convection heat transfer. John Wiley & sons, 2004.
[4] AboulNaga MM, Abdrabboh SN. Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall-roof solar chimney. Renew Energ, 19(1-2), pp. 47-54, 2000.
[5] Andersen KT. Theoretical considerations on natural ventilation by thermal buoyancy. Trans. ASHRAE, 101(2), pp. 1103-1117, 1995.
[6] Bansal NK, Mathur R, Bhandari MS. Solar chimney for enhanced stack ventilation. Building and Environment, 28, pp. 373-377, 1993.
[7] Chen ZD, Bandopadhayay P, Halldorson J, Byrjalsen C, Heiselberg P, LiY. An experimental investigation of a solar chimney model with uniform wall heat flux. Build Environ, 38(7), pp. 893-906, 2003.
[8] Ferziger JH, Peric M. Computational methods for fluid dynamics. New York, Springer-Verlag, 1996.
[9] Flourentzou F, Van der Maas J, Roulet C-A. Natural ventilation for passive cooling: measurement of discharge coefficients. Energy and Buildings, 27, pp. 283–92, 1998.
[10] G. Tanda. Natural convection heat transfer in vertical channels with and without transverse square ribs. Int. J. Heat Mass Transfer, 40, pp. 2173-2185, 1997.
[11] G. Tanda. Natural convective heat transfer in vertical channels with low thermal conductivity ribs. International Journal of Heat and Fluid Flow, 29, pp. 1319-1325, 2008.
[12] Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer. 4th ed. John Wiley, 1996.
[13] J.A. Duffie, W.A. Beckman. Solar engineering of thermal processes. Wiley, New York, 1991.
[14] Joseph Khedari, Jongjit Hirunlabh, Tika Bunnag. Experimental study of a roof solar collector towards the natural ventilation of new houses. Energy Build, 26(2), pp. 159-64, 1997.
[15] Jongjit Hirunlabh, Sopin Wachirapuwadon, Naris Pratinthong, Joseph Khedari. New configurations of a roof solar collector maximizing natural ventilation. Build Environ, 36(3), pp. 383-391, 2001.
[16] J. Mathur, S. Mathur, Anupma. Summer-performance of inclined roof solar chimney for natural ventilation. Energy and Buildings, 38, pp. 1156-1163, 2006.
[17] J. P. Van Doormal, G. G. Raithby. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numerical Heat Transfer, 7, pp. 147-163, 1984.
[18] K.S. Ong. A mathematical model of a solar chimney. Renewable Energy, 28, pp. 1047-1060, 2003.
[19] L.F.A. Azevedo, E.M. Sparrow. Natural convection in open-ended inclined channels. J. Heat Transfer, 107, pp. 893-901, 1985.
[20] Swinbank WC. Long wave radiation from clear skies. Q. J. R. Meteoro. Soc, 89, pp. 339, 1963.
[21] S.H. Bhavnani, A.E. Bergles. Natural convection heat transfer from sinusoidal wavy surfaces. Waerme Stoffuebertragung / Thermo Fluid Dynam., 26, pp. 341-349, 1991.
[22] Sudaporn Chungloo, Bundit Limmeechokchai. Utilization of cool ceiling with roof solar chimney in Thailand: the experimental and numerical analysis. Renew Energy, 34(3), pp. 623-633, 2009.
[23] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere , McGraw-Hill, Washington , 1980.
[24] Yadav AS, Bhagoria JL. A CFD analysis of a solar air heater having triangular rib roughness on the absorber plate. Int J ChemTech Res, 5(2), pp. 964-71, 2013.
[25] 建築節能應用技術手冊, 經濟部能源局 & 財團法人台灣綠色生產力基金會, 2012.