簡易檢索 / 詳目顯示

研究生: 陳佳偉
Chen, Jia-Wei
論文名稱: 混合式電晶體在低溫下之特性探討
Behavior of Hybrid FET characteristic at cryogenic temperature
指導教授: 江孟學
Chiang, Meng-Hsueh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 38
中文關鍵詞: 鰭式電晶體低溫橫向擴散金氧半場效電晶體(LDMOS)
外文關鍵詞: FinFET, cryogenic temperature, LDMOS
相關次數: 點閱:102下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這個科技日新月異的時代,為了追求元件高速、低功耗的特性,低溫電子學越來越受到關注。許多研究表明,在低溫下操作MOSFET有許多優點,包括更好的次臨界擺伏、更高的載子遷移率以及較低的導通電阻等。然而,對於常作為I/O元件的橫向擴散金氧半場效電晶體(LDMOS)而言,其在低溫下的特性是否更加優異,是值得我們探討的。
    在本篇論文中,我們量測了混合式電晶體的電性,其結構結合了鰭式通道與平面飄移區以實現更好的導通電阻。藉由量測其在低溫下的特性,我們探討了LDMOS在低溫下的表現以及其背後的物理機制,以作為未來應用在低溫下的LDMOS設計的參考。

    In this rapidly evolving era of technology, there is increasing interest in cryogenic electronics to achieve high-speed and low-power characteristics in electronic components. Many studies have shown the advantages of operating MOSFETs at low temperatures, including improved subthreshold swing, higher carrier mobility, and lower on-resistance. However, for laterally diffused metal-oxide-semiconductor (LDMOS) devices commonly used as I/O components, it is important to investigate whether their characteristics are further enhanced at low temperatures.
    In this thesis, we measured the electrical properties of hybrid transistors that combine fin-channel and planar drift regions to achieve improved on-resistance. By measuring their performance at low temperatures and exploring the underlying physical mechanisms, we investigated the behavior of LDMOS devices as a reference for future designs of LDMOS for cryogenic temperature applications.

    摘要 I Abstract II Contents III Table Captions V Figure Captions VI Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Overview of the Thesis 3 Chapter 2 Review of LDMOS and Physics in Cryogenic Temperature 4 2.1 LDMOS Structure 4 2.2 Breakdown Mechanism 5 2.2.1 Punch-through Breakdown 5 2.2.2 Dielectric Breakdown 6 2.2.3 Avalanche Breakdown 6 2.3 Specific On-resistance 7 2.4 Key Cryogenic Temperature Phenomenon in CMOS 8 2.4.1 Subthreshold Swing in Cryogenic Temperature 8 2.4.2 Incomplete Ionization and Carrier Freeze-out 9 2.4.3 Mobility 12 Chapter 3 Hybrid FET 15 3.1 Hybrid FET Structure 15 3.2 Device Design 17 3.3 The Method of Parametric Extraction 20 3.3.1 Threshold Voltage 20 3.3.2 Subthreshold Swing 20 3.3.3 Ion/Ioff Ratio 20 3.3.4 Drain Induced Barrier Lowering 21 3.3.5 Ron and Breakdown Voltage 21 Chapter 4 Device Characteristics in Cryogenic Temperatures 22 4.1 FinFET Characteristics in Cryogenic Temperatures 22 4.2 Hybrid FET Characteristics in Cryogenic Temperatures 26 Chapter 5 Conclusion 35 Chapter 6 Future Work 36 Reference 37

    [1] M. Shrivastava, M. S. Baghini, H. Gossner, and V. R. Rao, "Part I: Mixed-Signal Performance of Various High-Voltage Drain-Extended MOS Devices," IEEE Transactions on Electron Devices, vol. 57, no. 2, pp. 448-457, 2010, doi: 10.1109/TED.2009.2036796.
    [2] R. A. Bianchi, F. Monsieur, F. Blanchet, C. Raynaud, and O. Noblanc, "High voltage devices integration into advanced CMOS technologies," in 2008 IEEE International Electron Devices Meeting, 15-17 Dec. 2008 2008, pp. 1-4, doi: 10.1109/IEDM.2008.4796634.
    [3] Y. T. Wu et al., "Simulation-Based Study of Hybrid Fin/Planar LDMOS Design for FinFET-Based System-on-Chip Technology," IEEE Transactions on Electron Devices, vol. 64, no. 10, pp. 4193-4199, 2017, doi: 10.1109/TED.2017.2736442.
    [4] A. Beckers, F. Jazaeri, and C. Enz, "Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K," IEEE Journal of the Electron Devices Society, vol. 6, pp. 1007-1018, 2018, doi: 10.1109/JEDS.2018.2817458.
    [5] K. N. Kaushal and N. R. Mohapatra, "A Physics-Based Compact Model to Capture Cryogenic Behavior of LDMOS Transistors," IEEE Transactions on Electron Devices, vol. 70, no. 3, pp. 857-863, 2023, doi: 10.1109/TED.2022.3233813.
    [6] A. S. Kashyap, M. Mudholkar, H. A. Mantooth, T. Vo, and M. Mojarradi, "Cryogenic characterization of lateral DMOS transistors for lunar applications," in 2009 IEEE Aerospace conference, 7-14 March 2009 2009, pp. 1-8, doi: 10.1109/AERO.2009.4839525.
    [7] J. A. Appels and H. M. J. Vaes, "High voltage thin layer devices (RESURF devices)," in 1979 International Electron Devices Meeting, 3-5 Dec. 1979 1979, pp. 238-241, doi: 10.1109/IEDM.1979.189589.
    [8] C. Marquez, "Electrical Characterization of Reliability in Advanced Silicon-On-Insulator Structures for sub-22nm Technologies," 2017.
    [9] 吳奕廷, "輸出級與靜態隨機存取記憶體之鰭式與閘極全包覆式電晶體設計," 博士, 微電子工程研究所, 國立成功大學, 台南市, 2022. [Online]. Available: https://hdl.handle.net/11296/mvd54y
    [10] A. Beckers, F. Jazaeri, and C. Enz, "Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors," IEEE Electron Device Letters, vol. 41, no. 2, pp. 276-279, 2020, doi: 10.1109/LED.2019.2963379.
    [11] D. P. Foty, "Impurity ionization in MOSFETs at very low temperatures," Cryogenics, vol. 30, no. 12, pp. 1056-1063, 1990/12/01/ 1990, doi: https://doi.org/10.1016/0011-2275(90)90207-S.
    [12] C. Kenneth, H. Jian-hui, D. Jon, K. K. Ping, and H. Chenming, "A MOSFET electron mobility model of wide temperature range (77 - 400 K) for IC simulation," Semiconductor Science and Technology, vol. 12, no. 4, p. 355, 1997/04/01 1997, doi: 10.1088/0268-1242/12/4/002.
    [13] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration," IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2357-2362, 1994, doi: 10.1109/16.337449.
    [14] M. Shrivastava, H. Gossner, and V. R. Rao, "A Novel Drain-Extended FinFET Device for High-Voltage High-Speed Applications," IEEE Electron Device Letters, vol. 33, no. 10, pp. 1432-1434, 2012, doi: 10.1109/LED.2012.2206791.
    [15] 黃雅琪, "基於TCAD模擬評估之鰭式電晶體與橫向環繞式奈米片電晶體用於未來互補式場效應電晶體元件," 博士, 微電子工程研究所, 國立成功大學, 台南市, 2022. [Online]. Available: https://hdl.handle.net/11296/y6df3v

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE