簡易檢索 / 詳目顯示

研究生: 楊政穎
Yang, Chen-Ying
論文名稱: 包覆維他命E醋酸酯之藻油載體的製備及特性分析
Preparation and characterization of vitamin E acetate-encapsulating microalgal lipid carriers
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 109
中文關鍵詞: 破囊壺菌微藻油液胞維他命E醋酸酯膜流動性
外文關鍵詞: Thraustochytrium sp. DJ3 strain, microalgal lipid, vesicle, vitamin E acetate, bilayer fluidity
相關次數: 點閱:189下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別將萃取自破囊壺菌之兩種不同批次的微藻油添加不同莫耳比率的維他命E醋酸酯製備液胞,分析其粒徑、界面電位及穩定天數,並利用熱差式掃描卡量計法、螢光偏極化法及傅利葉轉換紅外光譜法分析液胞雙層膜的膜流動性及相轉移行為,以及利用Cell Counting Kit-8法測試藻油液胞對人類正常支氣管上表皮細胞的細胞毒性。此外,以穩定之液胞系統進行一連串分離和濃度測定,了解不同的脂肪酸碳鏈結構對於形成之帶負電藻油液胞物化特性及包覆效率的影響。
    兩種批次藻油皆可以形成穩定性佳的帶負電液胞,對生物具低毒性,在低濃度中皆保持80%以上的細胞存活率。兩種批次藻油形成液胞之初始粒徑和界面電位隨脂肪酸碳鏈分布而不同。添加維他命E醋酸酯後,發現批次一藻油液胞因原雙層膜排列較整齊而膜結構變化不大,批次二藻油因原雙層膜排列缺陷較多而膜結構變化較顯著。
    由兩種批次藻油製備之液胞包覆維他命E醋酸酯的結果,可以發現脂肪酸結構差異對包覆效率的影響並不顯著,主要影響包覆效率的因素為材料多寡,即使批次一藻油液胞的流動性較低,在高的維他命E醋酸酯濃度下也有較高的包覆效率。

    Microalgal lipid is the material with high utilization value which can act as low cost and high nutritional value delivery carrier. In this study, a microalgal lipid mixture rich in DHA was extracted from an isolated Thraustochytrium sp. DJ3 strain. In order to investigate the encapsulation capability of the microalgal lipid as hydrophobic materials carriers, this study aims to apply the microalgal lipid as delivery carrier of vitamin E acetate. The microalgal lipid was used to fabricate bilayered vesicles with negative charges by a forced formation approach. Moreover, the vesicles were used as carriers for encapsulating vitamin E acetate. Physical properties of the vesicles, including initial size and zeta potential, were measured. Fluidity of the vesicular membranes with and without vitamin E acetate was then investigated by IR spectroscopy, fluorescence polarization and differential scanning calorimetry. Cytotoxicity of microalgal lipid vesicles was evaluated by WST-8 cell viability assay. The results showed that stable vesicles with negative charges could be successfully formed from the microalgal lipid, remaining stable after being diluted to 0.026 wt%, whose original concentration is 2.6 wt%. The cell viabilities of BEAS-2B cell treated by the microalgal lipid vesicles are close to 100% while the concentration is enough low. The vitamin E acetate entered the bilayer and affected the initial size and zeta potential of the vesicles, lowering the membrane fluidity of the vesicles. The existence of vitamin E acetate had no adverse effect on the stability of the microalgal lipid vesicles and presented the high encapsulation efficiency over 80 mol%, which showed the potential of using microalgal lipid for fabricating vitamin E acetate-encapsulating vesicles.

    摘要 I Extended Abstract II 總目錄 XIII 表目錄 XVI 圖目錄 XVIII 符號說明 XXII 第一章 緒論 1   1.1 前言 1   1-2 文獻回顧 3    1-2-1 脂肪酸液胞 3    1-2-2 微藻生產之油脂 6    1-2-3 液胞雙層膜的流動性 9    1-2-4 液胞的相轉移行為 10    1-2-5 碳鏈對稱性和鏈長的效應 14    1-2-6 疏水性藥物的包覆 16    1-2-7 維他命E醋酸酯奈米載體 17    1-2-8 生物毒性 18   1-3 研究動機與目的 19 第二章 實驗 21   2-1 藥品 21   2-2 實驗儀器及裝置 23    2-2-1 超音波震盪分散裝置 23    2-2-2 雷射光散射法粒徑及界面電位分析儀 24    2-2-3 穿透式電子顯微鏡 30    2-2-4 凝膠層析管 30    2-2-5 傅利葉轉換紅外光譜儀 31    2-2-6 熱差式掃描卡量計 34    2-2-7 發光光譜儀 34    2-2-8 冷凍乾燥機 35    2-2-9 紫外-可見光分光光度計 36   2-3 實驗方法 37    2-3-1 液胞分散液的製備 37    2-3-2 液胞粒徑分布及界面電位的量測 37    2-3-3 維他命E醋酸酯包覆效率的計算 38    2-3-4 螢光偏極化實驗 39    2-3-5 穿透式紅外光譜的分析 39    2-3-6 細胞毒性測試 41 第三章 結果與討論 43   3-1 藻油液胞 43    3-1-1 藻油液胞的物化特性 43    3-1-2 稀釋對藻油液胞穩定性的影響 54    3-1-3 藻油液胞的相轉移行為 61    3-1-4 藻油液胞的細胞毒性 73   3-2 包覆維他命E醋酸酯之藻油液胞 75    3-2-1 包覆維他命E醋酸酯之藻油液胞的製備 75    3-2-2 包覆維他命E醋酸酯對藻油液胞物化特性的影響 76    3-2-3 包覆維他命E醋酸酯對藻油液胞雙層膜流動性的影響 80    3-2-4 藻油液胞之維他命E醋酸酯包覆效率 92 第四章 結論 96 參考文獻 98

    Ali, M. H., Moghaddam, B., Kirby, D. J., Mohammed, A. R. and Perrie, Y., “The role of lipid geometry in designing liposomes for the solubilisation of poorly water soluble drugs,” International Journal of Pharmaceutics, 453, 1, 225-232, 2013.
    Aramaki, Y., Matsuno, R., Nitta, F., Arima, H., and Tsuchiya, S., “Negatively charged liposomes inhibit tyrosine phosphorylation of 41-kDa protein in murine macrophages stimulated with LPS,” Biochemical and Biophysical Research Communications 220, 1-6, 1996.
    Aramaki, Y., Takano, S., and Tsuchiya, S., “Induction of apoptosis in macrophages by cationic liposomes,” FEBS Letter 460, 472-476, 1999.
    Asai, Y. and Watanabe, S., “Interaction of a-tocopherol acetate with phosphatidylcholine and their formation of small dispersed particles,” Chem. Pharm. Bull., 46, 11, 1785-1789, 1998.
    Bhardwaj, U. and Burgess, D. J., “Physicochemical properties of extruded and non-extruded liposomes containing the hydrophobic drug dexamethasone,” International Journal of Pharmaceutics, 388, 1-2, 181-189, 2010.
    Blandamer, M. J., Briggs, B., Cullis, P. M., Rawlings, B. J. and Engberts, J., “Vesicle-cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC,” Physical Chemistry Chemical Physics, 5, 23, 5309-5312, 2003.
    Bouarab, L., Maherani, B., Kheirolomoom, A., Hasan, M., Aliakbarian, B., Linder, M. and Arab-Tehrany, E., “Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.” Colloids Surf B Biointerfaces, 115, 197-204, 2014.
    Bui, T. T., Suga, K., and Umakoshi, H., “Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems,” Langmuir, 32, 6176-6184, 2016.
    Chen, C. and Tripp, C. P., "An infrared spectroscopic based method to measure membrane permeance in liposomes," Biochimica et Biophysica Acta 1778, 2266-2272, 2008.
    Choosakoonkriang, S., Wieyhoff, C. M., Anchordoquy, T. J., Koe, G. S., Smith, J. G. and Middaugh, R. C., “Infrared spectroscopic characterization of the interaction of cationic lipids with plasmid DNA,” The Journal of Biological Chemistry 276, 8037-8043, 2001.
    Cistola, D. P., Hamilton, J. A., Jackson, D. and Small, D. M., “Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule,” Biochemistry, 27, 1881-1888, 1988.
    Crosasso, P., Ceruti, M., Brusa, P., Arpicco, S., Dosio, F. and Cattel, L., “Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes,” Journal of Controlled Release, 63, 1-2, 19-30, 2000.
    Douliez, J. P., Houssou, B. H., Fameau, A. L. and Navailles, L., “Self-Assembly of bilayer vesicles made of saturated long chain fatty acid," Langmuir, 32, 401−410, 2016.
    Eastman, S. J., Siegel, C., Tousignant, J., Smith, A. E., Cheng, S. H. and Scheule, R. K., “Biophysical characterization of cationic lipid: DNA complexes,” Biochimica et Biophysica Acta-Biomembranes, 1325, 1, 41-62, 1997.
    Feitosa, E., Jansson, J. and Lindman, B., “The effect of chain length on the melting temperature and size of dialkyldimethylammonium bromide vesicles,” Chemistry and Physics of Lipids, 142, 1-2, 128-132, 2006.
    Fournier, I., Barwicz, J., Auger, M., and Tancrede, P., “The chain conformational order of ergosterol- or cholesterol-containing DPPC bilayers as modulated by amphoteric in B: a FTIR study,” Chemistry and Physics of Lipids 151, 41-50, 2008.
    Gebicki, J. M. and Hicks, M., “Ufasomes are stable particles surrounded by unsaturated fatty acid membranes,” Nature, 243, 232-234, 1973.
    Gunarsa, C. A., “含雙十六碳鏈磷酸鹽之陰陽離子液胞的物理穩定性及維他命E包覆效率,” 國立成功大學化學工程學系碩士論文, 2010.
    Hara, M., Yuan, H., Yang, Q., Hoshino, T., Yokoyama., Mikake, J., “Stabilization of liposomal membranes by thermozeaxanthins: carotenoid-glucoside esters,” Biochimica et Biophysica Acta, 1461, 147-154, 1999.
    Herrington, K. L., Kaler, E. W., Miller, D. D., Zasadzinski, J. A. and Chiruvolu, S., “Phase-behavior of aqueous mixtures of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl-sulfate (SDS),” Journal of Physical Chemistry, 97, 51, 13792-13802, 1993.
    Hincha, D. K., “Effects of alpha-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes,” Febs Letters, 582, 25-26, 3687-3692, 2008.
    Holmberg, K., “Handbook of applied surface and colloid chemistry,” 2002.
    Hong, S. S., Kim, S. H. and Lim, S. J., “Effects of triglycerides on the hydrophobic drug loading capacity of saturated phosphatidylcholine-based liposomes,” International Journal of Pharmaceutics, 483, 1-2, 142-150, 2015.
    Immordino, M. L., Brusa, P., Arpicco, S., Stella, B., Dosio, F. and Cattel, L., “Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel,” Journal of Controlled Release, 91, 3, 417-429, 2003.
    Inoue, T., Yanagihara, S. I., Misono, Y. and Suzuki, M., "Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: saturated versus unsaturated fatty acids," Chemistry and Physics of Lipids 109, 117-133, 2001.
    Israelachvili, J. N., Mitchell, D. J. and Ninham, B. W., “Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers,” Journal of the Chemical Society-Faraday Transactions II, 72, 1525-1568, 1976.
    Jayme, M. L., Dunstan, D. E. and Gee, M. L., “Zeta potentials of gum arabic stabilised oil in water emulsions,” Food Hydrocolloids, 13, 459-465, 1999.
    Kawakami, K., Nishihara, Y. and Hirano, K., “Liposome/Emulsion Transition Induced by -Tocopheryl Acetate” Langmuir, 15, 7454-7460, 1999.
    Kafrawy, O., Zerouga, M., Stillwell, W. and Jenski, L. J., “Docosahexaenoic acid in phosphatidylcholine mediates cytotoxicity more effectively than other -3 and -6 fatty acids,” Cancer Letters, 132, 23-29, 1998.
    Kaler, E. W., Murthy, A. K., Rodriguez, B. E. and Zasadzinski, J. A. N., “Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants,” Science, 245, 4924, 1371-1374, 1989.
    Keough, K. M. W. and Davis, P. J., “Gel to liquid-crystalline phase-transitions in water dispersions of saturated mixed-acid phosphatidylcholines,” Biochemistry, 18, 8, 1453-1459, 1979.
    Kodati, V. R., El-Jastimi, R., and Lafleur, M., “Contribution of the intermolecular coupling and librotorsional mobility in the methylene stretching modes in the infrared spectra of acyl chains,” J. Phys. Chem., 98, 12191-12197, 1994.
    Kranenburg, M. and Smit, B., “Phase behavior of model lipid bilayers,” Journal of Physical Chemistry B, 109, 14, 6553-6563, 2005.
    Kuo, J.-H., Jan, M.-S., Chang, C.-H., Chiu, H.-W., and Li, C.-T., “Cytotoxicity characterization of catanionic vesicles in RAW 264.7 murine macrophage-like cells,” Colloids and Surfaces B:Biointerfaces 41, 189-196, 2005.
    Kuo, J.-H., Chang, C.-H., Lin, Y.-L. and Wu, C.-J., “Flow cytometric characterization of interactions between U-937 human macrophages and positively charged catanionic vesicles,” Colloids and Surfaces B:Biointerfaces 64, 307-313, 2008.
    Lasic, D. D., “Liposomes: from physics to applications,” Elsevier Amsterdam,” New York, 265-318, 1993.
    Lasic, D. D., “Liposomes in gene delivery,” CRC Press, New York, 67-112, 1997.
    Lasic, D. D. and Papahadjopoulos, D., “Liposomes and biopolymers in drug and gene delivery,” Current Opinion in Solid State & Materials Science, 1, 3, 392-400, 1996.
    Lee, W. H., Tang, Y. L., Chiu, T. C. and Yang, Y. M., “Synthesis of Ion-Pair Amphiphiles and Calorimetric Study on the Gel to Liquid-Crystalline Phase Transition Behavior of Their Bilayers,” Journal of Chemical and Engineering Data, 60, 4, 1119-1125, 2015.
    Lewis, R. N. A. H. and McElhaney, R. N., “The structure and organization of phospholipid bilayers as revealed by infrared spectroscopy,” Chemistry and Physics of Lipids 96, 9-21, 1998.
    Liu, N. and Park, H.J., “Chitosan-coated nanoliposome as vitamin E carrier,” J. Microencapsulation 26, 235–242, 2009.
    Lopes, S., Neves, C., Eaton, P. and Gameiro, P., “Cardiolipin, a key component to mimic the E. coli bacterial membrane in model system membranes,” Biophysical Journal, 100, 626-626, 2011.
    Manosroi, A., Wongtrakul, P., Manosroi, J., Sakai, H., Sugawara, F., Yuasa, M. and Abe, M., “Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol,” Colloids and Surfaces B-Biointerfaces, 30, 1-2, 129-138, 2003.
    Marsh, D., “CRC handbook of lipid bilayers,” 1990.
    Massey, J. B., “Interfacial properties of phosphatidylcholine bilayers containing vitamin E derivatives,” Chemistry and Physics of Lipids, 109, 157-174, 2001.
    Matos, A. P., “Essential fatty acid from microalgae,” Inform, 27, 22-26, 2016.
    Merino-Montero, S., Montero, M. T. and Hernandez-Borrell, J., “Effects of lactose permease of Escherichia coli on the anisotropy and electrostatic surface potential of liposomes,” Biophysical Chemistry, 119, 101-105, 2006
    Morigaki, K. and Peter, Walde, P., “Fatty acid vesicles,” Current Opinion in Colloid & Interface Science, 12, 75-80, 2007.
    Michel, N., Fabiano, A. S., Polidori, A., Jack, R. and Pucci, B., “Determination of phase transition temperatures of lipids by light scattering,” Chemistry and Physics of Lipids, 139, 1, 11-19, 2006.
    Murai, M., Aramaki, Y., and Tsuchiya, S., “Identification of the serum factor required for liposome-primed activation of mouse peritoneal-macrophages-modified alpha (2)-macroglobulin enhances Fc-gamma receptor-mediated phagocytosis of opsonized sheep red-blood-cells,” Immunology 86, 64-70, 1995.
    McMullen, T. P. W., Ruthven, N. A. H., Ronald L. and McElhaney, N., “Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes,” Biophysical Journal, 80, 4 2056-2065, 2000.
    Namania, T., Ishikawa, T., Morigaki, K. and Walde, P., “Vesicles from docosahexaenoic acid,” Colloids and Surfaces B: Biointerfaces, 54, 118-123, 2007.
    New, R. R. C., “Liposomes: a practical approach,” Oxford University Press, New York, 1-32, 1990.
    Reis, O., Winter, R. and Zerda, T. W., “The effect of high external pressure on DPPC-cholesterol multilamellar vesicles: a pressure-tuning Fourier transform infrared spectroscopy study,” Biochimica et Biophysica. Acta 1279, 5-16, 1996.
    Regev, O. and Khan, A., “Alkyl chain symmetry effects in mixed cationic-anionic surfactant systems,” Journal of Colloid and Interface Science, 182, 1, 95-109, 1996.
    Ruozi, B., Belletti, D., Tombesi, A., Tosi, G., Bondioli, L., Forni, F. and Vandelli, M. A., “AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study,” International Journal of Nanomedicine, 6, 557-563, 2011.
    Segota, S. and Tezak, D., “Spontaneous formation of vesicles,” Advances in Colloid and Interface Science, 121, 1-3, 51-75, 2006.
    Stillwell, W. and Wassall, S. R., “Review: Docosahexaenoic acid: membrane properties of a unique fatty acid,” Chemistry and Physics of Lipids, 126, 1–27, 2003.
    Teo, Y. Y., Misran, M., Low, K. H., “Effect of PEGylated lipid and Lecinol S-10 on physico-chemical properties and encapsulation efficiency of palmitoleate-palmitoleic acid vesicles,” J Liposome Res,24, 3, 241-248, 2014.
    Tondre, C. and Caillet, C., “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Advances in Colloid and Interface Science, 93, 1-3, 115-134, 2001.
    Vist, M. R. and Davis, J. H., “Phase-equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures - deuterium nuclear magnetic-resonance and differential scanning calorimetry,” Biochemistry, 29, 2, 451-464, 1990.
    Wang, X. and Quinn, P. J., “The distribution of K-tocopherol in mixed aqueous dispersions ofphosphatidylcholine and phosphatidylethanolamine,” Biochimica et Biophysica Acta, 1509, 361-372, 2000.
    Ward, O. P. and Singh, A., “Omega-3/6 fatty acids: Alternative sources of production,” Process Biochemistry, 40, 3627-3652, 2005.
    Watry, M. R., Tarbuck, T. L. and Richmond, G. I., “Vibrational sum-frequency studies of a series of phospholipid monolayers and the associated water structure at the vapor/water interface,” Journal of Physical Chemistry B, 107, 2, 512-518, 2003.
    Wolfangel, P. and Muller, K., “Chain order in lipid bilayers: FTIR and solid state NMR studies on bilayer membranes from 1,2-Dimyristoyl-sn-glycero-3-phosphoglucose,” Journal of Physical Chemistry 107, 9918-9928, 2003.
    Wu, C. J., Kuo, A.T., Lee, C.H., Yang, Y.M., Chang, C.H., “Fabrication of positively charged catanionic vesicles from ion pair amphiphile with double-chained cationic surfactant,” Colloid and Polymer Science, 292, 589-597, 2014.
    Yatcilla, M. T., Herrington, K. L., Brasher, L. L., Kaler, E. W., Chiruvolu, S. and Zasadzinski, J. A., “Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS),” Journal of Physical Chemistry, 100, 14, 5874-5879, 1996.
    王鈺婷, “帶負電陰陽離子液胞的物化特性及維他命E醋酸酯包覆效率-離子對雙親分子碳鏈結構的影響,” 國立成功大學化學工程學系碩士論文, 2015.
    余欣盈, “以藻油製備包覆葉黃素之液胞的可行性,” 國立成功大學化學工程學系碩士論文, 2017.
    洪振益, “溫度效應對帶電陰陽離子液胞釋放行為的影響,” 國立成功大學化學工程學系碩士論文, 2009.
    林冠豪, “帶電的陰陽離子液胞之製備及物理穩定性研究,” 國立成功大學化學工程學系碩士論文, 2004.
    黃曉貞, “以醱酵策略提升本土破囊壺菌DJ3之DHA生產效能,” 國立成功大學化學工程學系碩士論文, 2015.
    廖怡芬, “長碳鏈醇類添加劑對帶電陰陽離子液胞物理穩定性的影響,” 國立成功大學化學工程學系碩士論文, 2006.
    鍾依玲, “陰/陽離子液胞自發性形成之探討,” 國立成功大學化學工程學系碩士論文, 2002.
    劉育姍, “陰陽離子液胞包覆維他命E醋酸酯之行為探討,” 國立成功大學化學工程學系碩士論文, 2010.

    下載圖示 校內:2021-08-17公開
    校外:2021-08-20公開
    QR CODE