| 研究生: |
任洪翔 Jen, Hung-Hsiang |
|---|---|
| 論文名稱: |
開發蛋白質體學及微滴質譜法於定量兒茶酚雌激素在血
紅蛋白的加成比率 Development of Proteomics and Microdroplet Mass Spectrometry-based Method for Quantifying Adduction Level of Catechol Estrogens on Hemoglobin |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 血紅蛋白 、兒茶酚雌激素 、自下而上蛋白質體學 、微滴反應 |
| 外文關鍵詞: | Hemoglobin, catechol estrogens, bottom-up proteomics, microdroplet reactions |
| 相關次數: | 點閱:125 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
兒茶酚雌激素 (Catechol estrogens, CEs) 是具有遺傳毒性的代謝產物,因其在血液中低濃度和高變化性而檢測上具有挑戰性。透過對添加CEs的溶血產物進行完整蛋白測定,可以發現內源性CEs主要 (> 99%) 以血紅蛋白 (Hemoglobin, Hb) 加成物形式存在於紅血球中。為了檢測內源性CE-Hb加成物,我們開發了一種兩步法,其中涉及以蛋白質沉澱和固相萃取從紅血球中純化Hb,然後將該方法與蛋白質體學結合,以液相層析串聯質譜法分析之。從自下而上蛋白質體學 (Bottom-up proteomics) 和標準添加法(Standard additions) 得到的結果中我們確定Hb-"β" 上的C93和C112是Hb被CEs修飾的主要位點。透過平行反應監測 (Parallel reaction monitoring, PRM) 靶向測定相同Hb-"β" 序列的非加成物胰蛋白酶肽、加成物胰蛋白酶肽和氧化胰蛋白酶肽,以確定紅血球中的CE修飾程度。我們達到了低於內源性CE-Hb修飾程度的定量極限 (S/N >8) ,相對標準誤範圍為5-22%,並將其應用於臨床樣本上。結果指出乳癌患者的內源性CE-Hb 修飾程度高於健康對照組,並且它們之間存在顯著差異(p=3.44 x10-6),表明預測乳腺癌風險的準確率接近 100%。本項研究報導了在蛋白質體學基礎上開發一種測定血紅蛋白加成物的有效樣品製備方法。
然而在測定 CE-Hb 修飾程度的整個過程,包括建立校正曲線和酵素消化,都非常耗時。在微滴中,許多反應的速率可以被極大地加速。我們研究並驗證利用微滴加速 CEs 加成反應和胰蛋白酶消化反應,其中Hb-? 和 Hb-β 的序列覆蓋率達到 100%,從而節省了大量建立校正曲線和酵素消化的時間。此外,我們也驗證了有機溶劑對微滴酵素消化的影響。其中ACN 的存在增強了肽的信號,而沒有顯著降低酵素消化的效率,表明微滴消化與液相層析結合的高可行性。更重要的是,當 Hb 加入高濃度的 CEs 時,在微滴質譜條件下觀察到具有 CEs 修飾的肽的訊號。然而如果添加低劑量的 CEs ,則由於離子抑制效應而無法檢測到CEs 修飾的肽的訊號。
Estrogen exposure is known as one of the main risk factors for development of breast cancer.Catechol estrogens (CEs), the genotoxic metabolites, are challenging targets to be measured due to the low abundance and high variability in blood. Since CEs were reported to conjugate with blood protein (Anal. Chem. 2019, 91, 15922−1593), it is of great importance to study the level of CEs in red blood cells (RBCs, also known as erythrocytes), the most abundant type of blood cell in blood. Hemoglobin (Hb), a major protein in RBCs, was chosen as the target protein to study the level of CE in circulating blood, as it can reflect estrogen exposure
level in a long time. A two-step method coupled with proteomics using liquid
chromatography-tandem mass spectrometry was developed to purify Hb from RBCs and to determine the CEs level in blood. The CE-Hb adduct was demonstrated to increase with the added CEs using standard additions and intact protein measurement. Moreover, two cysteine residues, namely C93-Hb-β and C112-Hb-β, were identified as the main adduction site of Hb using bottom-up proteomics and standard additions. To determine the adduction level in RBCs, the cysteine-containing peptides, including those with and without CE modification
and oxidation, were targeted by parallel reaction monitoring. The calibration curves with added CE in low and high concentration ranges were established. A quantitation limit (S/N > 8) was achieved below the adduction level of endogenous CE-Hb with a relative standard error ranging from 5% to 22% and applied to clinical samples. The CE-Hb adduction levels of patients were observed to be higher than that of healthy controls, and a significant difference between them (p=3.44 x10-6
) was presented, indicating a near 100% accuracy in predicting the risk of breast cancer. Our study reported an efficient sample preparation method for proteomics-based Hb adducts.
However, the whole process to determine CE-Hb adduction level, including establishment of calibration curves and enzymatic digestion, is time-consuming. In microdroplets, rates of many reactions can be extremely accelerated. We investigated accelerated CEs adduction reaction and trypsin digestion in microdroplets. The ultrafast digestion of Hb and hemolysates in microdroplets was demonstrated, with the sequence coverage of 100% for both Hb-? and Hb-β. Furthermore, the impact of ACN on microdroplet digestion was verified. The presence of ACN enhanced the peptides’ signals without significantly decreasing the efficiency of digestion, indicating the high feasibility of coupling the microdroplet digestion with HPLC. CEs adduction reaction was shown to be accelerated in microdroplets, saving a lot of time on establishing the calibration curves. More importantly, the peptides with CEs modification were observed under microdroplet-MS conditions when Hb was spiked with high concentration of CE. However, the peptides of interest were not detected due to ion suppression if the amount of added CEs was low.
1. Cui, J., Shen, Y., and Li, R., Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med, 2013. 19(3): p. 197-209.
2. Wise, P.M., Suzuki, S., and Brown, C.M., Estradiol: a hormone with diverse and contradictory neuroprotective actions. Dialogues Clin Neurosci, 2009. 11(3): p. 297-303.
3. Cavalieri, E.L., Stack, D.E., Devanesan, P.D., Todorovic, R., Dwivedy, I., Higginbotham, S., Johansson, S.L., Patil, K.D., Gross, M.L., Gooden, J.K., Ramanathan, R., Cerny, R.L., and Rogan, E.G., Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci U S A, 1997. 94(20): p. 10937-10942.
4. Cavalieri, E., Chakravarti, D., Guttenplan, J., Hart, E., Ingle, J., Jankowiak, R., Muti, P., Rogan, E., Russo, J., Santen, R., and Sutter, T., Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta, 2006. 1766(1): p. 63-78.
5. Pike, M., Progestins and menopause: epidemiological studies of risks of endometrial and breast cancer. Steroids, 2000. 65(10-11): p. 659-664.
6. Bertelsen, L., Mellemkjaer, L., Frederiksen, K., Kjaer, S.K., Brinton, L.A., Sakoda, L.C., van Valkengoed, I., and Olsen, J.H., Risk for breast cancer among women with endometriosis. Int J Cancer, 2007. 120(6): p. 1372-1375.
7. Latourelle, J.C., Dybdahl, M., Destefano, A.L., Myers, R.H., and Lash, T.L., Estrogen-related and other disease diagnoses preceding Parkinson's disease. Clin Epidemiol, 2010. 2: p. 153-170.
8. Hevener, A.L., Clegg, D.J., and Mauvais-Jarvis, F., Impaired estrogen receptor action in the pathogenesis of the metabolic syndrome. Mol Cell Endocrinol, 2015. 418 Pt 3: p. 306-321.
9. Fuhrman, B.J., Schairer, C., Gail, M.H., Boyd-Morin, J., Xu, X., Sue, L.Y., Buys, S.S., Isaacs, C., Keefer, L.K., Veenstra, T.D., Berg, C.D., Hoover, R.N., and Ziegler, R.G., Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst, 2012. 104(4): p. 326-339.
10. Falk, R.T., Brinton, L.A., Dorgan, J.F., Fuhrman, B.J., Veenstra, T.D., Xu, X., and Gierach, G.L., Relationship of serum estrogens and estrogen metabolites to postmenopausal breast cancer risk: a nested case-control study. Breast Cancer Res, 2013. 15(2): p. R34.
11. Do, Q.T., Huang, T.E., Liu, Y.C., Tai, J.H., and Chen, S.H., Identification of Cytosolic Protein Targets of Catechol Estrogens in Breast Cancer Cells Using a Click Chemistry-Based Workflow. J Proteome Res, 2021. 20(1): p. 624-633.
12. Huang, Y.S., Lin, Y.M., Chen, H., Wu, C.H., Syu, C.H., Huang, T.E., Do, Q.T., and Chen, S.H., Targeting Endogenous Adduction Level of Serum Albumin by Parallel Reaction Monitoring via Standard Additions and Intact Protein Measurement: Biological Dosimetry of Catechol Estrogens. Anal Chem, 2019. 91(24): p. 15922-15931.
13. Fang, C.M., Ku, M.C., Chang, C.K., Liang, H.C., Wang, T.F., Wu, C.H., and Chen, S.H., Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicol Sci, 2015. 148(2): p. 433-442.
14. Santen, R.J., Lee, J.S., Wang, S., Demers, L.M., Mauras, N., Wang, H., and Singh, R., Potential role of ultra-sensitive estradiol assays in estimating the risk of breast cancer and fractures. Steroids, 2008. 73(13): p. 1318-1321.
15. Stanczyk, F.Z., Cho, M.M., Endres, D.B., Morrison, J.L., Patel, S., and Paulson, R.J., Limitations of direct estradiol and testosterone immunoassay kits. Steroids, 2003. 68(14): p. 1173-1178.
16. Rinaldi, S., Déchaud, H., Biessy, C., Morin-Raverot, V., Toniolo, P., Zeleniuch-Jacquotte, A., Akhmedkhanov, A., Shore, R.E., Secreto, G., Ciampi, A., Riboli, E., and Kaaks, R., Reliability and validity of commercially available, direct radioimmunoassays for measurement of blood androgens and estrogens in postmenopausal women. Cancer Epidemiol Biomarkers Prev, 2001. 10(7): p. 757-765.
17. Lin, C., Chen, D.R., Hsieh, W.C., Yu, W.F., Lin, C.C., Ko, M.H., Juan, C.H., Tsuang, B.J., and Lin, P.H., Investigation of the cumulative body burden of estrogen-3,4-quinone in breast cancer patients and controls using albumin adducts as biomarkers. Toxicol Lett, 2013. 218(3): p. 194-199.
18. Robles, J., Marcos, J., Renau, N., Garrostas, L., Segura, J., Ventura, R., Barceló, B., Barceló, A., and Pozo, O.J., Quantifying endogenous androgens, estrogens, pregnenolone and progesterone metabolites in human urine by gas chromatography tandem mass spectrometry. Talanta, 2017. 169: p. 20-29.
19. Khedr, A. and Alahdal, A.M., Liquid chromatography-tandem mass spectrometric analysis of ten estrogen metabolites at sub-picogram levels in breast cancer women. J Chromatogr B Analyt Technol Biomed Life Sci, 2016. 1031: p. 181-188.
20. Huang, H.J., Chiang, P.H., and Chen, S.H., Quantitative analysis of estrogens and estrogen metabolites in endogenous MCF-7 breast cancer cells by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2011. 879(20): p. 1748-1756.
21. Xu, X., Roman, J.M., Issaq, H.J., Keefer, L.K., Veenstra, T.D., and Ziegler, R.G., Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Anal Chem, 2007. 79(20): p. 7813-7821.
22. Miller, E.C. and Miller, J.A., Mechanisms of chemical carcinogenesis: nature of proximate carcinogens and interactions with macromolecules. Pharmacol Rev, 1966. 18(1): p. 805-838.
23. Ali, A., Soman, S.S., and Vijayan, R., Dynamics of camel and human hemoglobin revealed by molecular simulations. Sci Rep, 2022. 12(1): p. 122.
24. Marengo-Rowe, A.J., Structure-function relations of human hemoglobins. Proc (Bayl Univ Med Cent), 2006. 19(3): p. 239-245.
25. Ahmed, M.H., Ghatge, M.S., and Safo, M.K., Hemoglobin: Structure, Function and Allostery. Subcell Biochem, 2020. 94: p. 345-382.
26. Preston, G.W. and Phillips, D.H., Protein Adductomics: Analytical Developments and Applications in Human Biomonitoring. Toxics, 2019. 7(2).
27. Rubino, F.M., Pitton, M., Di Fabio, D., and Colombi, A., Toward an "omic" physiopathology of reactive chemicals: thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds. Mass Spectrom Rev, 2009. 28(5): p. 725-784.
28. Ghosh, A., Banerjee, S., Mitra, A., Muralidharan, M., Roy, B., Banerjee, R., Mandal, A.K., and Chatterjee, I.B., Interaction of p-benzoquinone with hemoglobin in smoker's blood causes alteration of structure and loss of oxygen binding capacity. Toxicol Rep, 2016. 3: p. 295-305.
29. Glish, G.L. and Vachet, R.W., The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov, 2003. 2(2): p. 140-150.
30. Xie, F., Smith, R.D., and Shen, Y., Advanced proteomic liquid chromatography. J Chromatogr A, 2012. 1261: p. 78-90.
31. Yamashita, M. and Fenn, J.B., Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry, 1984. 88(20): p. 4451-4459.
32. Karas, M., Bachmann, D., Bahr, U., and Hillenkamp, F., Matrix-assisted ultraviolet laser desorption of non-volatile compounds. International Journal of Mass Spectrometry and Ion Processes, 1987. 78: p. 53-68.
33. Banerjee, S. and Mazumdar, S., Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem, 2012. 2012: p. 282574.
34. Rayleigh, L., XX. On the equilibrium of liquid conducting masses charged with electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1882. 14(87): p. 184-186.
35. Konermann, L., Ahadi, E., Rodriguez, A.D., and Vahidi, S., Unraveling the mechanism of electrospray ionization. Anal Chem, 2013. 85(1): p. 2-9.
36. Annesley, T.M., Methanol-associated matrix effects in electrospray ionization tandem mass spectrometry. Clin Chem, 2007. 53(10): p. 1827-1834.
37. Lebedev, A. and Zaikin, V., Organic mass spectrometry at the beginning of the 21st century. Journal of Analytical Chemistry, 2008. 63(12): p. 1128-1154.
38. Allen, D.R. and McWhinney, B.C., Quadrupole Time-of-Flight Mass Spectrometry: A Paradigm Shift in Toxicology Screening Applications. Clin Biochem Rev, 2019. 40(3): p. 135-146.
39. Perry, R.H., Cooks, R.G., and Noll, R.J., Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev, 2008. 27(6): p. 661-699.
40. Zubarev, R.A. and Makarov, A., Orbitrap mass spectrometry. Anal Chem, 2013. 85(11): p. 5288-5296.
41. Eliuk, S. and Makarov, A., Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu Rev Anal Chem (Palo Alto Calif), 2015. 8: p. 61-80.
42. Wilkins, M.R., Sanchez, J.C., Gooley, A.A., Appel, R.D., Humphery-Smith, I., Hochstrasser, D.F., and Williams, K.L., Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev, 1996. 13: p. 19-50.
43. Aslam, B., Basit, M., Nisar, M.A., Khurshid, M., and Rasool, M.H., Proteomics: Technologies and Their Applications. J Chromatogr Sci, 2017. 55(2): p. 182-196.
44. Noordin, R. and Othman, N., Proteomics technology - a powerful tool for the biomedical scientists. Malays J Med Sci, 2013. 20(2): p. 1-2.
45. Xie, F., Liu, T., Qian, W.J., Petyuk, V.A., and Smith, R.D., Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem, 2011. 286(29): p. 25443-25449.
46. Gregorich, Z.R., Chang, Y.H., and Ge, Y., Proteomics in heart failure: top-down or bottom-up? Pflugers Arch, 2014. 466(6): p. 1199-1209.
47. Dodds, E.D., An, H.J., Hagerman, P.J., and Lebrilla, C.B., Enhanced peptide mass fingerprinting through high mass accuracy: Exclusion of non-peptide signals based on residual mass. J Proteome Res, 2006. 5(5): p. 1195-1203.
48. Seidler, J., Zinn, N., Boehm, M.E., and Lehmann, W.D., De novo sequencing of peptides by MS/MS. Proteomics, 2010. 10(4): p. 634-649.
49. Xu, Q., Cui, Z., Venkatraman, G., and Gomes, A.V., The use of biophysical proteomic techniques in advancing our understanding of diseases. Biophys Rev, 2012. 4(2): p. 125-135.
50. Hu, A., Noble, W.S., and Wolf-Yadlin, A., Technical advances in proteomics: new developments in data-independent acquisition. F1000Res, 2016. 5.
51. Rauniyar, N., Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry. Int J Mol Sci, 2015. 16(12): p. 28566-28581.
52. Yu, Q., Liu, B., Ruan, D., Niu, C., Shen, J., Ni, M., Cong, W., Lu, X., and Jin, L., A novel targeted proteomics method for identification and relative quantitation of difference in nitration degree of OGDH between healthy and diabetic mouse. Proteomics, 2014. 14(21-22): p. 2417-2426.
53. Huang, K.H., Wei, Z., and Cooks, R.G., Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface. Chem Sci, 2020. 12(6): p. 2242-2250.
54. Perry, R.H., Splendore, M., Chien, A., Davis, N.K., and Zare, R.N., Detecting reaction intermediates in liquids on the millisecond time scale using desorption electrospray ionization. Angew Chem Int Ed Engl, 2011. 50(1): p. 250-254.
55. Zhu, X., Zhang, W., Lin, Q., Ye, M., Xue, L., Liu, J., Wang, Y., and Cheng, H., Direct Microdroplet Synthesis of Carboxylic Acids from Alcohols by Preparative Paper Spray Ionization without Phase Transfer Catalysts. ACS Sustainable Chemistry & Engineering, 2019. 7(7): p. 6486-6491.
56. Logsdon, D.L., Li, Y., Paschoal Sobreira, T.J., Ferreira, C.R., Thompson, D.H., and Cooks, R.G., High-Throughput Screening of Reductive Amination Reactions Using Desorption Electrospray Ionization Mass Spectrometry. Organic Process Research & Development, 2020. 24(9): p. 1647-1657.
57. Yan, X., Cheng, H., and Zare, R.N., Two-Phase Reactions in Microdroplets without the Use of Phase-Transfer Catalysts. Angew Chem Int Ed Engl, 2017. 56(13): p. 3562-3565.
58. Rainer, T., Eidelpes, R., Tollinger, M., and Muller, T., Microdroplet Mass Spectrometry Enables Extremely Accelerated Pepsin Digestion of Proteins. J Am Soc Mass Spectrom, 2021. 32(7): p. 1841-1845.
59. Zhao, P., Gunawardena, H.P., Zhong, X., Zare, R.N., and Chen, H., Microdroplet Ultrafast Reactions Speed Antibody Characterization. Anal Chem, 2021. 93(8): p. 3997-4005.
60. Zhong, X., Chen, H., and Zare, R.N., Ultrafast enzymatic digestion of proteins by microdroplet mass spectrometry. Nat Commun, 2020. 11(1): p. 1049.
61. Girod, M., Moyano, E., Campbell, D.I., and Cooks, R.G., Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem. Sci., 2011. 2(3): p. 501-510.
62. Liu, C., Li, J., Chen, H., and Zare, R.N., Scale-up of microdroplet reactions by heated ultrasonic nebulization. Chem Sci, 2019. 10(40): p. 9367-9373.
63. Bain, R.M., Pulliam, C.J., and Cooks, R.G., Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chem Sci, 2015. 6(1): p. 397-401.
64. Hao, H., Leven, I., and Head-Gordon, T., Can electric fields drive chemistry for an aqueous microdroplet? Nat Commun, 2022. 13(1): p. 280.
65. Marsh, B.M., Iyer, K., and Cooks, R.G., Reaction Acceleration in Electrospray Droplets: Size, Distance, and Surfactant Effects. J Am Soc Mass Spectrom, 2019. 30(10): p. 2022-2030.
66. Kafeenah, H., Jen, H.H., and Chen, S.H., Microdroplet mass spectrometry: Accelerating reaction and application. Electrophoresis, 2022. 43(1-2): p. 74-81.
67. Jen, H.H., Kafeenah, H., Chang, T.Y., Lin, Y.M., Shan, Y.S., Wu, C.H., and Chen, S.H., Quantification of the Endogenous Adduction Level on Hemoglobin and Correlation with Albumin Adduction via Proteomics: Multiple Exposure Markers of Catechol Estrogen. J Proteome Res, 2021. 20(9): p. 4248-4257.
68. Rahbar, S., Hemoglobin: Structure, function, evolution, and pathology. American Journal of Human Genetics, 1983. 35(4): p. 781.
69. Chen, D.R., Chen, S.T., Wang, T.W., Tsai, C.H., Wei, H.H., Chen, G.J., Yang, T.C., Lin, C., and Lin, P.H., Characterization of estrogen quinone-derived protein adducts and their identification in human serum albumin derived from breast cancer patients and healthy controls. Toxicol Lett, 2011. 202(3): p. 244-252.
70. Chen, J., Wang, F., Liu, Z., Liu, J., Zhu, Y., Zhang, Y., and Zou, H., Electrospray ionization in concentrated acetonitrile vapor improves the performance of mass spectrometry for proteomic analyses. J Chromatogr A, 2017. 1483: p. 101-109.
71. Strader, M.B., Tabb, D.L., Hervey, W.J., Pan, C., and Hurst, G.B., Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems. Anal Chem, 2006. 78(1): p. 125-134.