| 研究生: |
劉懷剛 Liu, Huai-Gang |
|---|---|
| 論文名稱: |
氣體在微流道中稀薄與壓縮效應之數值研究 Numerical Study of Rarefaction and Compressibility Effects on Gas Flows in Microchannels |
| 指導教授: |
黃啟鐘
Hwang, Chii-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 微流道 、有限體積上風法 、稀薄效應 、壓縮效應 |
| 外文關鍵詞: | microchannel, slip boundary condition, Navier-Stokes Equation |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電系統(Micro-electromechanical Systems, MEMS)已在電子、機械、材料、光電等專業領域成功地整合。在此方面,微流體學(micro-fluidics) 扮演不可或缺的地位,因為在流場中幾何形狀的特徵長度大小經常是以微米的等級出現,造成微流道內的流體呈現相對稀薄的情況。以探討在滑移流領域之稀薄效應,本研究在流道壁面採用馬克斯威爾之滑移速度、溫度躍升和熱潛變邊界條件。為瞭解壓縮效應與稀薄效應,在四面體與稜鏡型混合網格上利用有限體積上風法求解可壓縮流三維連續拿維-史脫克方程式和能量方程式。沿著截面為圓形或梯形之微管道壁先建立稜鏡型網格,然後在流場中其他區域建構非結構四面體網格,首先探討圓形截面微管流,經由計算所得之速度分佈與相關文獻比較可確定本數值方法之準確性。對於梯形截面之微流道,在高馬赫數的稀薄流場中是無法形成完全發展流的,而且使用滑動邊界條件會使得流場的速度分佈趨向扁平,且使得流道上的切線剪應力變小,所以微管道流中的Poiseuille number會比一般流場要小。因壓縮效應使壓力分佈非線性化及稀薄效應的壓力分佈線性化可知,在稀薄流場中稀薄效應與壓縮效應是互相牽制的兩個作用。
The progression of Micro-electromechanical Systems, MEMS is successfully integrated into the professional field such as electronics, mechanics, materials, and optoelectronics, in this case, micro-fluidics plays an essential role. Due to the characteristic length of geometrical shape in flow field appear in the level of micrometer, the flow inside microchannel is relatively rarefaction. In view of traditional theory of continuum under the measurement of micronano, the theory is facing the difficulty of application. The article aims at producing a more practical three-dimension microchannel of trapezoid cross-section and analyzing how rarefaction effect and effect of compressibility interact in the spectrum of slip flow, by using Navier-Stokes Equation in relation to the boundary condition of slip flow and 3-D tetrahedral/ prismatic mesh system; Furthermore, it will establish a three-dimension numerical simulating system through which property of flow field is fast and accurately predicted. As the micro-fluidics-related statistic data is built, analysis of physic phenomenon and the characteristics of flow field is underway.
1. ” MEMS programs at DARPA” , by William C. Tang, Ph.D.
2. MicroOptoElectro Mechanical System At DARPA, Overview Briefing, by Dr. Elias Towe.
3. 中科院光電暨材料研究所經濟部技術「微系統技術及應用發展」九十年度科專計畫資料。
4. Schaaf. S. A., Chambre, P. L., “Flow of Rarefied Gases”, Princeton University Press, Princeton, NJ. 1961.
5. E. S. Piekos, K. S. Breuer, “Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method” ,J of Fluid Engineering, Vol. 118, pp. 464-469, 1996.
6. P. Y. Wu and W. A. Little, Measurement of Friction Factors for the Flow and Gases in Very Fine Channels Used for Microminiature Joule-Thomson Refrigerators, Cryogen ics, vol. 23, pp. 273- 277, 1983.
7. S. B. Choi, R. F. Barron, and R. O. Warrington, Fluid Flow and Heat Transfer in Microtubes, Micromechanical Sensors, Actuators, and Systems, DSC-Vol. 32, pp. 123–134, ASME, New York, 1991.
8. J. Harley, Y. Huang, H. Bau, and J. Zemel, “Gas Flow in Micro- Channels”, Journal of Fluid Mech, vol. 284, pp. 257- 274, 1995.
9. R. Van de Berg, C. Seldam, and P. Gulik, ”Compressible Laminar Flow in a Capillary”, Journal of Fluid Mech, vol. 246, pp. 1- 20, 1993.
10. E. B. Arkilic,M. A. Schmidt, and K. S. Breuer, Gaseous Slip Flow in Long Microchannels, Journal of Microelectromechnical System, vol. 6(2) , pp. 167-178, 1997.
11. R. Schamberg, The Fundam ental Differential Equations and the Boundary Conditions for High Speed Slip-Flow, and Their Appli- cation to Several Specific Problems, Ph.D. thesis, California Institute of Technology, 1947.
12. R. G. Deissler, An Analysis of Second-Order Slip Flow and Tempe- rature Jump Boundary Conditions for Rarefied Gases, International Journal Heat Mass Transfer, vol. 7, pp. 681-694, 1964.
13. C. Cercignani, Plane Poiseuille Flow and Knudsen Minimum Effect, Proceedings of Third International Symposium on Rarefied Gas Dynamics, vol. 1, pp. 92-101, 1963.
14. X. Zhong, On Numerical Solutions of Burnett Equations for Hyper- sonic Flow Past 2-D Circular Blunt Leading Edges in Continuum Transition Region, AIAA 42 Fluid Dynamics Conference, Orlando, Florida, USA, AIAA 93-3092, 1993.
15. Xue, Hong, Fan, Qing, “A new analytic solution of the NAVIER-STOKES equations for microchannel flows”. Microscale Thermophysical Engineering; Vol. 4 Issue 2, p125, Apr2000.
16. W. A. Ebert and E. M. Sparrow, Slip Flow in Rectangular and Annular Ducts, J. Basic Eng., vol. 87, pp. 1018–1024, 1965.
17. G. L. Morini and M. Spiga, Slip Flow in Rectangular Microtubes, Microscale Thermophys. Eng., vol. 2, pp. 273–282, 1998.
18. Z. Y. Guo and X. B. Wu, Further Study on Compressibility Effects on the Gas Flow and Heat Transfer in a Microtube, Microscale Thermophys. Eng., vol. 2, pp. 111–120, 1998.
19. S. Fukui and R. Kaneko, Analysis of Ultra Thin Gas Film Lubrication Based on Linearized Boltzmann Equation: First Report} Derivation of a Generalized Lubrication Equation Including Thermal Creep Flow, J. Tribol., vol. 110, pp. 253-262, 1988.
20. F. J. Alexander, A. L. Garcia, and B. J. Alder, Direct Simulation Monte Carlo for Thin-Film Bearings, Phys. Fluids, vol. 6, no. 12, pp. 3854-3860, 1994.
21. S. A. Tison, Experimental Data and Theoretical Modeling of Gas Flows through Metal Capillary Leaks, Vacuum, vol. 44, pp. 1171] 1175, 1993.
22. A. Beskok, W. Trimmer, and G. E. Karniadakis, Rarefaction and Compressibility and Thermal Creep Effects in Gas Microflows, IMECE 95, Proc. ASME Dynamic Systems and Control Division, DSC-Vol. 57-2, pp. 877-892, 1995.
23. A. K. Sreekanth, Slip Flow through Long Circular Tubes, in L. Trilling and H. Y. s . Wachman eds. , Proc. Sixth Int. Symp. on Rarefied Gas Dynamics, vol. 1, pp. 667-680, 1969.
24. J. Q. Liu, Y. C. Tai, K. C. Pong, and C. M. Ho, Micromachined Channel r Pressure Sensor Systems for Micro Flow Studies, 7th Int. Conf. on Solid-State Sensors and Actuators, pp. 995-998, Transducers ’93.
25. K. C. Pong, C. M. Ho, J. Liu, and Y. C. Tai, Non-linear Pressure Distribution in Uniform Microchannels, Application of Microfabrication to Fluid Mechanics, FED-Vol. 197, pp. 51-56, ASME, New York, 1994.
26. E. H. Kennard, Kinetic Theory of Gasses, McGraw-Hill, New York, 1938.
27. Aubert Cécile, Colin Stéphane, “HIGH-ORDER BOUNDARY CONDITIONS FOR GASEOUS FLOWS IN RECTANGULAR MICRODUCTS”, Microscale Thermophysical Engineering;Vol.5,Issue 1, p41,2001
28. Hsieh, Shou-Shinga; Tsai, Huang-siua; Lin, Chih-Yia, “Gas flow in a long microchannel” , International Journal of Heat and Mass Transfer, Vol.47, Issue: 17-18,pp. 3877-3887,2004.
29. S. Colin, “Rarefaction and compressibility effects on steady and transient gas flows in microchannels”, Microfluidics and Nanofluidics, Vol.1, Number 3,pp.268 – 279,2004
30. G. X. Li, W. Q. Tao, Z. Y. Li, B. Yu, “Direct numerical simulation of rarefied turbulent microchannel flow”, Microfluidics and Nanofluidics,2005.
31. D. Sinton., “Microscale flow visualization”, Microfluid Nanofluid, Vol. 1, pp.2-21, 2004.
32. George Em Karnidakis and Ali Beskok, “Micro Flow” Springer, New York, 2002.
33. 王奕婷, “流體在微渠道流動之數值模擬”, 中山大學機械與機電工程研究所碩士論文, 2003.
34. Kennard, E. T., “Kinetic Theory of Gasses”, McGraw-Hill, New York,1938.
35. 頼建文, “動態四面體/稜鏡型網格之建立”成功大學航太所碩士論文, 2005, 7月.
36. C. Y. Liu and C. J. Hwang, “New Strategy for Unstructured Mesh Generation,” AIAA Journal, Vol. 39, No. 6, June 2001.
37. 楊毅勇, “在四面體/稜鏡型網格上計算旋翼葉片黏性流場及噪音”成功大學航太所碩士論文, 2005, 7月.