| 研究生: |
鄒宗昕 Tsou, Tsung-Hsin |
|---|---|
| 論文名稱: |
矽奈米線之合成及場發射特性分析 Synthesis of Silicon Nanowires and Its Field Emission Properties Analysis |
| 指導教授: |
邱輝煌
Chiu, Hui-Huang 劉建惟 Liu, Chien-Wei 蔡欣倫 Tsai, Hsin-Luen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 矽奈米線 、場發射顯示器 、場發射 |
| 外文關鍵詞: | field emission, silicon nanowires, field emission display |
| 相關次數: | 點閱:147 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
場發射顯示器是藉由背面基板的陰極放電,將螢光層激發進而發光的新世代顯示器。其最大的優點在於結合了傳統陰極射線管以及現有平面顯示器的所有好處於一身,諸如:反應速度快、高亮度、做動溫度範圍大(-40~+80oC),體積小。雖然場發射顯示器具有以上的優勢,但是卻仍有許多待解決的問題,包含:使用壽命的提升,可靠度、成本、以及追求更小的驅動電壓。爲了解決這些問題,本研究試著採用矽奈米線作為場發射的發射體,因為其具有良好的深寬比、小的放射尖端曲率半徑等本質的條件。我們希望能藉由矽奈米線的合成條件控制(深寬條件、密度等),改善放射體的物理性質,進而獲得更小的起始電場。
在理論模擬部分,文中採用了圓球體座標系統結合電場勢位能以及場發射的統馭方程(FN方程式),作為分析的基礎,計算出在不同幾何外型與邊界條件下的電場強度以及電流密度。並從此結果,作為實驗設計的依據與佐證,發現到,在放射體尖端曲率半徑越小、外加電壓越大、陽極距離越近、以及越低的材料功函數的情況下會得到最好的場發射效果。
實驗中,我們使用金作為觸媒來成長矽奈米線,並先對適當金矽共熔合金顆粒的形成做了探討,發現到在10,30,60sec(2nm,5nm,10nm)的厚度條件下,在預處理後可得到較均勻的奈米顆粒。接著採用前處理得到最佳的鍍金時間,使用熱化學氣相沉積的方式成長矽奈米線。發現在適當的濃度、成長溫度,觸媒厚度及成長時間的條件下,可以大幅的降低現有矽奈米線的起始電場到大約0.7V/um的水準。
A field emission display (FED) is a new generation of flat panel displays using field emitting cathodes to bombard phosphor coatings anode as the light emissive medium. FED combines the merits of conventional cathode ray tube (CRT) and other flat panel displays such as quick response, high brightness, operation temperature, small etc. Even though there are some unsolved problems in this field including life time, reliability, cost, and lowering turn on field. We have adopted a potential material, that is, silicon naonwires, which are great in high aspect ratio, tiny curvature of fine tip, IC comparable, to improve the field emission characteristics under properly synthesis condition.
In simulation part of this work, the nature of the field emission is defined analytically by employing an exact 3D electric field solution in prolate spheroidal coordinates and FN equation with examining the relationship between current density and electric field. This approach has widely adopted in literature and provided an analytical guideline in fabrication of emitters, including fine tip curvature radius, applied voltage, lower anode distance, and decreasing material work function.
We have been used gold as catalyst for silicon nanowires synthesis due to its lower eutectic point to other materials, and vapor-liquid-solid (VLS) mechanism via thermal chemical vapor deposition has been utilized in this work. A low turn on field (~0.7V/um) emitter based on SiNWs has been synthesized successfully under properly condition of synthesis such as growth time, growing temperature, and introduced gas percentage.
1. Fowler, R. H. and Nordheim, L. W., “Electron Emission in Intense Field”, Proceeding of Royal Society, A229, 1928
2. Meyer, R., “Recent Development on Microtips Display”, Technical Digest of IVMC 91, 1991, pp.6-9.
3. Branston, D. W. and Stepbani, D., “Field Emission from Metal-Coated Silicon Tips”, IEEE Trans. Elect. Dev., Vol.38, No.10, 1991, pp2329-2332.
4. Zhirnov, V. V., Givargizov, E. I. and Plekhanov, P. S., “Field Emission from Silicon Spikes with Diamond Coatings”, Journal of Vacuum Science and Technology B, Vol.13, No.2, 1995, pp418-421.
5. Jung J. H. and Kwon Y. S., “A Novel Fabrication Technology for Integrating FETs and High-Performance Diodes, and Its Application to MMIC VCO”, IEEE IEDM 96, 1996, pp. 215-218.
6. http://www.samsungsdi.co.kr/contents/en/tech/disClass_02_01
7. http://www.nanoelectroncs.jp
8. Wei Zhu, “Vacuum Microelectronics”, John Wiley & Sons Inc., 2001
9. Spindt C. A., Brodie I., Humphrey L. and Westerberg E. R., “Physical Properties of Thin Film Field Emission Cathodes with Molybdenum Cones”, Journal of Applied Physics, Vol.47, Issue 12, 1976, pp.5248-5263
10. Itoh S. and Tanaka M., “Current Status of Field-Emission Displays”, Proceedings of the IEEE, Vol.90, No.4, 2002, pp.514-520.
11. Choi W. B., Chung D. S. and Kang, J. H. et al., “Fully Sealed, High Brightness Carbon Nanotube Field Emission Display”, Applied Physics Letters, Vol.75, Issue 20, 1999, pp.3129-3132.
12. Xu X. and Brandes G. R., “A Method for Fabricating Large-Area, Patterned, Carbon Nanotube Field Emitters”, Applied Physics Letters, Vol.74, Issue 17, 1999 pp.2549-2554.
13. Rao A. M., Jacques D. and Haddon R. C., “In Situ Growth Carbon Nanotube Array with Excellent Field Emission Characteristics”, Applied Physics Letters, Vol.76, Issue 25, 2000, pp.3813-3816.
14. Milne W. I. and Teo K., “Growth and Characterization of Carbon Nanotubes for Field Emission Display Applications”, The Journal of the Society for Information Display, Vol.12, 2004, pp.289-292.
15. Vila L., Vincent P. and Gangloff L. et al., “Individual Nanotube and Nanowire Emitters”, Nano Letter, Vol.4, 2004, pp.1575-1579.
16. He J. H., Yang R. S. and Chueh Y. L. et al., “Aligned AlN Nanorods with Multi-Tipped Surfaces Growth, Field-Emission, and Cathodoluminescence Properties”, Advanced Materials, Vol.18, 2006, pp.650-654.
17. He J. H., Wu T. H. and Cheng L. H. et al., “Beaklike SnO2 Nanorods with Strong Photoluminescent and Field Emission Properties”, Small, Vol.2, Issue 1, 2006, pp.116-120.
18. Ryu Y. H., Park B. T., Song Y. Ho. and Yong K., “Carbon-Coated SiC Nanowires: Direct Synthesis from Si and Field Emission Characteristics”, Journal of Crystal Growth, Vol.271, 2004, pp.99-104.
19. Chang Y. Q., Wang M. W., and Chen X. H. et al., “Field Emission and Photoluminescence Characteristics of ZnS Nanowires via Vapor Phase Growth”, Solid State Communications, Vol.142, Issue 5, 2007, pp.295-298.
20. Sung W. Y., Kim W. J. and Lee S. M. et al., “Field Emission Characteristics of CuO Nanowires by Hydrogen Plasma Treatment”, Vacuum, Vol.81, Issue 7, 2007, pp.851-856.
21. Zhang Y. S., Yu K. and Li G. D. et al., “Field emission from patterned SnO2 nanostructures”, Applied Surface Science, Vol.253, Issue 2, 2006, pp.792-796.
22. Zeng B. Q., Xiong G. Y. and Chen S. et al., “Field emission of silicon nanowires grown on carbon cloth”, Applied Physics Letters, Vol.90, 2007
23. Wang J. H., Yang T. H. and Wu W. W. et al., “Synthesis and Growth Mechanism of Pentagonal Cu Nanobats with Field Emission Characteristics”, Nanotechnology, Vol.17, No.3, 2006, pp.719-722.
24. Chueh Y. L., Ko M. T. and Chou L. J. et al., “TaSi2 Nanowires : A Potential Field Emitter and Interconnect”, Nano Letters, Vol.6, No.8, 2006, pp.1637-1644.
25. Frederick C. K., Wong K. W. and Tang Y. H. et al., “Electron Field Emission form Silicon Nanowires”, Applied Physics Letters, Vol.75, No.12, 1999
26. Tang Y. H., Sun X. H. and Au F. C. K. et al., “Microstructure and Field Emission Characteristics of Boron-Doped Si Nanoparticle Chains”, Applied Physics Letters, Vol.79, No.11, 2001
27. Li Y. B., Bando Y., Golberg D. and Kurashima K., “Field Emission from MoO3 Nanobelts”, Applied Physics Letters, Vol.81, No.26, 2002
28. Chueh Y. L., Chou L. J., Cheng S. L., He J. H., Wu W. W. and Chen L. J., “Synthesis of Taperlike Si Nanowires with Strong Field Emission”, Applied Physics Letters, Vol.86, 133112, 2005
29. Kulkarni N. N., Bae J., Shih C. K., Stanley S. K., Coffee S. S. and Ekerdt J. G., “Low-Threshold Field Emission from Cesiated Silicon Nanowires”, Applied Physics Letters, Vol.87, 213115, 2005
30. Mu C., Yu Y. X., Liao W., Zhao X. S., Xu D. S., Cheng Xi. H. and Yu D. P., “Controlling Growth and Field Emission Properties of Silicon Nanotube Arrays by Multistep Template Replication and Chemical Vapor Deposition”, Applied Physics Letters, Vol.87, 113104, 2005
31. Zhou J., Gong L., Deng S. Z., Chen J., She J. C., Xu N. S., Yang R. and Wang Z. L., “Growth and Field-Emission Property of Tungsten Oxide Nanotip Arrays”, Applied Physics Letters, Vol.87, 223108, 2005
32. Zeng B., Xiong G. Y., Chen S., Jo S. H., Wang W. Z., Wang D. Z. and Ren Z. F., “Field Emission of Silicon Nanowires”, Applied Physics Letters, Vol.88, 213108, 2006
33. Graham Tizzard, “The Modelling and Measurements of Silicon Field Emitters for use in Ion Propulsion:Project Proposal”, University of Brimingham & CCLRC & RAL Project, 3rd November, 2006
34. Philip Hill, Carl Peterson, “Mechanics and thermodynamics of Propulsion”, Addison Wesley Publishing Company, Second Edition
35. Riffat S. B. and Ma X. L., “Thermoelectircs : A Review of Present and Potential Applications”, Applied Thermal Engineering, Vol.23, 2003, pp.913-935.
36. Abramson A. R., Kim W. C., Huxtable S. T., Yan H. Q., Wu Y. Y., Majumdar A., Tien C. L. and Yang P. D., “Fabrication and Characterization of a Nanowire/Polymer-Based Nanocomposite for a Prototype Thermoelectric Device, Journal of Microelectromechanical Systems”, Vol.13, No.3, 2004
37. Robert Gomer, “Field Emission and Field Ionization”, American Institute of Physics, 1993
38. S. M. Sze, “Physics of Semiconductor Devices”, 2nd ed., John-Wiley & Sons Publisher, New York, 1981, pp.648-651.
39. S. M. Sze, “Physics of Semiconductor Devices”, 2nd ed., John-Wiley & Sons Publisher, New York, 1981, pp.648-651.
40. Burgess R. E., Kroemer H., and Honston J. M., “Corrected Value of Fowler-Norheim Field Emission Function v(y) and s(y)”, Physical Review, Vol.1, No.4, 1953, pp.515-519.
41. Chen K. C., Chen C. F., Chiang J. S., Hwang C. L., Chang Y. Y. and Lee C. C., “Low Temperature Growth of Carbon Nanotubes on Printing Electrodes by MPCVD”, Thin Solid Films, Vol.498, 2006, pp.198-201.
42. Wagner R. S. and Ellis W. C., “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Applied Physics Letters, Vol.4, No.5, 1964
43. Westwater J., Gosain D. P., Tomiya S., and Usui S., “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction”, Journal of Vacuum Science Technology B, Vol.15, Issue 3, 1997, pp.554-557.
44. Morales A. M. and Lieber C. M., “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science, Vol.279, 1998, pp.208-211.
45. Barsotti R. J., Fischer Jr. J. E., Lee C. H., Mahmood J., Adu C. K. W., and Eklund P. C., “Imaging, Structural, and Chemical Analysis of Silicon Nanowires”, Applied Physics Letters, Vol.81, Issue 15, 2002, pp.2866-2868.
46. Kamins T. I., Stanley Williams R., Chen Y., Chang Y. L. and Chang Y. A., “Chemical Vapor Deposition of Si Nanowires Nucleated by TiSi2 Islands on Si”, Applied Physics Letters, Vol.76, 2000, pp.562-564.
47. Sunkara M. K., Sharma S., Miranda R., Lian G. and Dickey E. C., “Bulk Synthesis of Silicon Nanowires Using A Low-Temperature Vapor–Liquid–Solid Method”, Applied Physics Letters, Vol.79, Issue 10, 2001, pp.1546-1548.
48. Yan H. F., Xing X. J., Hang Q. L., Yu D. P., Wang Y. P., Xu J., Xi Z. H. and Feng S. Q., “Growth of Amorphous Silicon Nanowires via A Solid-Liquid-Solid Mechanism”, Chemical Physics Letters, Vol.323, 2000, pp.224-228.
49. Yu D. P., Xing Y. J., Hang Q. L., Yan H. F., Xu J., Xi Z. H. and Feng S. Q., “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid–Liquid–Solid (SLS) Mechanism”, Physica E : Low-dimensional Systems and Nanostructures, Vol.9, Issue 2, 2001, pp.305-309.
50. Chen X., Xing Y. J., Xu J., Xiang J. and Yu D. P., “Rational Growth of Highly Oriented Amorphous Silicon Nanowire Films”, Chemical Physics Letters, Vol.374, 2003, pp.626-630.
51. Wang N., Zhang Y. F., Tang Y. H., Lee C. S. and Lee S. T., “SiO2-Enhanced Synthesis of Si Nanowires by Laser Ablation”, Applied Physics Letters, Vol.73, Issue 26, 1998, pp.3902-3904.
52. Zhang R. Q., Lifshitz Y. and Lee S. T., “Oxide-Assisted Growth of Semiconducting Nanowires”, Advanced Materials, Vol.15, 2003, pp.637-640.
53. Peng H. Y., Pan Z. W., Xu L., Fan X. H., Wang N., Lee C. S. and Lee S. T., “Temperature Dependence of Si Nanowire Morphology”, Advanced Materials, Vol.13, Issue 5, 2001, pp.317-320.
54. Zang Y. F., Tang Y. H., Wang N., Yu D. P., Lee C. S., Bello I. and Lee S. T., “Silicon Nanowires Prepared by Laser Ablation at High Temperature”, Applied Physics Letters, Vol.72, Issue 15 1998, pp.1835-1837.
55. Wang N., Tang Y. H., Zhang Y. F., Lee C. S. and Lee S. T., “Nucleation and Growth of Si Nanowires from Silicon Oxide”, Physical Review B, Vol.58, R16024, 1998
56. Zaidman E. G., “Simulation of Field Emission Microtroides”, IEEE Transcations on Electron Devices, Vol.40, No.5, 1993, pp.1009-1016.
57. Kesling W. D. and Hunt C. E., “Field Emission Device Modeling for Application to Flat Panel Displays”, Journal of Vacuum Science Technology B, Vol.11, 1993, pp.518-522.
58. Nicolaescu D. and Avramescu V., “Filed Emission Diode Characterization through Model Parameters Extraction from Current-Voltage Experimental Data”, Journal of Vacuum Science Technology B, Vol.12, 1994, pp.749-753.
59. Jensen K. L., Philips P. M., Nguyen K., Malsawma L. and Hor C., “Electron Emission from a Single Spindt Type Emitter Structure : Correlation of Theory and Experiment ”, Applied Physics Letters, Vol.68, Issue 20, 1996, pp.2807-2809.
60. Zuber J. D., Jensen K. L. and Sullivan T. E., “An Analytical Solution for Microtip Field Emission Current and Effective Emission Area”, Journal of Applied Physics, Vol.91, No.11, 2002, pp.9379-9384.
61. Pan L. H., Sullivan T. E., Peridier V. J., Cutler P. H. and Miskovsky N. M., “Three Dimensional Electrostatic Potential, and Potential Energy Barrier, Near a Tip Base Junction”, Applied Physics Science, Vol.65, Issue 17, 1994, pp.2151-2153.
62. Forbes R. G., “Field Emission : New Theory for the Derivation of Emission Area from a Fowler Nordheim Plot”, Journal of Vacuum Science Technology B, Vol.17, 1999, pp.526-533.
63. Forbes R. G., “Use of Spreadsheet for Fowler Nordheim Equation Calculations”, Journal of Vacuum Science Technology B, Vol.17, 1999, pp.534-541.
64. Arfken G., “Mathematical Methods for Physicists”, 3rd, 1985