簡易檢索 / 詳目顯示

研究生: 曾梅菁
Tseng, Mei-Ching
論文名稱: 銠(Ⅲ)及銥(Ⅲ)金屬錯合物的合成、結構鑑定、光物理性質及電化學的研究
Synthesis, structure, photophysical and electrochemical studies of rhodium(III) and iridium(III) complexes
指導教授: 黃文亮
Huang, Wen-Liang
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 139
中文關鍵詞: 磷光銥(Ⅲ)銠(Ⅲ)
外文關鍵詞: Rhodium(III), Phosphorescence, Iridium(III)
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究第一部份合成[Ir(ppy)2(HDPA)](PF6) (1)、[Ir(ppy)2(DPA)] (2)、[Ir(ppy)2(dpk)](PF6) (3)和 [Ir(ppy)2(pik)](PF6) (4) (ppy = 2-phenyl- pyridine; HDPA = 2,2'-dipyridylamine; DPA = the deprotonated form of 2,2'-dipyridylamine; dpk = di-2-pyridyl ketone; pik = 2-pyridyl N-methyl -2-imidazolyl ketone )等混配基型有機金屬錯合物,以X-ray繞射、MS、IR、和NMR光譜鑑定其組成及結構,並探討其光物理及電化學性質。四種錯合物在紫外光區觀察到的強吸收皆為ππ*過渡吸收,在靠近可見光區的中度吸收為自旋允許的電荷轉移過渡吸收,而在吸收拖尾有消光係數小之微弱吸收應是屬於自旋禁制的電荷轉移過渡。就這四種錯合物的激發極化光譜中之極化值(P),顯示這些放光皆是源自於線性振動子。陽離子[Ir(ppy)2(N^N)]PF6 (N^N = HDPA, dpk, pik)錯合物在室溫下及低溫77K下均偵測到不對稱而具結構性之量子產率高的藍色、藍绿及绿色放光。分別偵測 313 nm、365 nm 激發能量下之四種錯合物的放光極化光譜圖,得到大致平坦,斜率近於0之圖譜,故放光應屬單一型態。

      綜合放光與電化學的結果可知,[Ir(ppy)2(N^N)]PF6在室溫或低溫下的放光型態是屬於3MLCT [dπ(Ir)-π*(N^N)]磷光。[Ir(ppy)2(DPA)]在室溫下及固態薄膜都是強的黃綠光。當HDPA配位子去質子形成DPA−,其電子密度增加,使DPA−的π和π*軌域能階都往上提升。因此,[Ir(ppy)2(HDPA)]PF6加鹼去質子形成[Ir(ppy)2(DPA)]錯合物後,HOMO由dπ(Ir)軌域轉變為DPA−的π軌域,而LUMO是由HDPA配位子的π*軌域轉變為ppy的π軌域,故[Ir(ppy)2(DPA)]之放光型態為3LLCT (DPA−-to-ppy)。

      第二部分鑑定trans-[Rh(Hbzpy)(bzpy)Cl2] X-ray繞射結構和以NMR光譜鑑定重新確定Rh(phen)(bzpy)Cl2為cis-α結構並探討其光物理及電化學性質。trans-Rh(Hbzpy)(bzpy)Cl2在金屬中心呈現接近八面體幾何結構,而兩個配位的氯原子是trans位置;Hbzpy配位子(N,O配位)上吡啶環的氮和bzpy配位子(N,C配位)上吡啶環的氮是trans位置。Hbzpy配位子的吡啶環和bzpy配位子的苯環在空間上彼此互相交錯[C(1)–N(1)–C(13)–C(14) = 53.9(2)o],造成在NMR光譜上C(1)/C(14)上的氫受到苯環/吡啶環之環電流效應的影響,往高磁場偏移並且這些氫在空間上仍具有NOE效應(the nuclear Overhauser effect)。cis α-Rh(phen)(bzpy)Cl2則在12 kK~17 kK之間觀測到一個寬廣,對稱且不具結構性的紅色放光帶,推測此放光型態是屬於dd* 過渡之磷光。cis β-Rh(bipy)(bzpy)Cl2 和 cis α-Rh(phen)- (bzpy)Cl2的放光位置相較於文獻之cis-[Rh(bipy)2Cl2]+ 和 cis-[Rh(phen)2Cl2]+的放光能量來的大,是由於配位子bzpy被金屬螯合之ortho-C苯基陰離子是較強的σ電子供給者,這可說明前者有較高的3d-d*激發態的能量。換句話說,相較於bipy/phen配位子,bzpy具有較強的晶場強度(ligand field strength)。

      第三部分針對cis-[Rh(dpk)2Cl2][Rh(dpk)Cl4]、trans-[Rh(dpk)2- Cl2]ClO4和cis-[Rh(dpk)2Cl2]ClO4錯合的X-ray繞射結構的討論和比較,以及探討trans-[Rh(dpk)2Cl2]ClO4之光物理性質。cis-[Rh(dpk)2 -Cl2][Rh(dpk)Cl4]在錯陰離子或錯陽離子在幾何形狀上都是一個扭曲的八面體的幾何形狀,在錯陽離子[Rh(dpk)2Cl2]+中兩個氯原子是cis位置。trans-[Rh(dpk)2Cl2]ClO4中dpk的吡啶環和羰基之間的torsional angle是35.6(5)o,然而cis-[Rh(dpk)2Cl2]ClO4中dpk的吡啶環和羰基之間的torsional angle分別是26.7(12)o和26.1(11)o,可能的原因為dpk是六員環,必須有較大的空間和金屬配位,因此,trans-[Rh(dpk)2Cl2]ClO4會造成空間的擁擠使dpk結構扭曲成船型的程度較大。因此從X-ray的分子結構得知,trans異構物相較於cis異構物是比較堅硬(rigid)的分子。trans-[Rh(dpk)2Cl2]ClO4在低溫和室溫下都可觀測到一個寬廣,對稱且不具結構性的紅色放光,是屬於3dd*的型式。

      The research performed in this works constitutes three major parts. The synthesis, X-ray crystal structure, luminescence and electrochemical properties of four bis-cyclometalated heteroleptic Ir(III) complexes, [Ir(ppy)2(HDPA)](PF6) (1), [Ir(ppy)2(DPA)] (2), [Ir(ppy)2(dpk)](PF6) (3), and [Ir(ppy)2(pik)](PF6) (4) (where ppy = 2-phenylpyridine, HDPA = 2,2'-dipyridylamine, DPA = the deprotonated form of 2,2'-dipyridylamine, dpk = di-2-pyridyl ketone, and pik = 2-pyridyl N-methyl-2-imidazolyl ketone ) are reported in the first part. Each complex exhibits strong absorption in the UV region, due to spin-allowed π-π* transitions, and moderately intense bands in the visible region, due to spin-allowed 1MLCT transitions. In addition, weaker absorption bands and tailing at lower energy are corresponding to spin-forbidden 3MLCT transitions. The excitation polarization spectrum obtained for each complex indicates that emission chromophore behaves as linear oscillator. The emission polarization spectra of each complex, excited by 313 and 365 nm, exhibit flat with a vanished slope indicating a band of singly emission rather than multiple ones. Both at room temperature and 77K, [Ir(ppy)2(N^N)](PF6) (N^N = HDPA, dpk, pik) exhibit intense blue-green emission, assigned as 3MLCT [dπ(Ir)-π*(N^N)] phosphorescence. [Ir(ppy)2(DPA)] exhibits intense room temperature luminescence both in solution and as solid films. Assignment of the emissive behavior to a 3LLCT (DPA−-to-ppy) excited state is proposed. Analysis of voltammetric data also provides evidence in support of those assignments.

      The X-ray crystal structure of trans-[Rh(Hbzpy)(bzpy)Cl2] and the photophysical and electrochemical studies, as well as the conformer elucidations, of cis-[Rh(bzpy)(phen)Cl2] (where bzpy = 2-(2-pyridyl- carbonyl)-phenyl and phen = 1,10-phenanthroline) are contained in the second part. trans-[Rh(Hbzpy)(bzpy)Cl2] features a Rh(III) atom that is coordinated by two N, one O, one C and two trans Cl atoms in a distorted octahedral environment. The pyridyl ring of Hbzpy and the phenyl ring of bzpy are mutually stacked to [C(1)–N(1)–C(13)–C(14) = 53.84o] and upfield shift of H(C1)/H(C14) and NOE of these H-atoms were also observed in the NMR spectrum. The NMR chemical shift data of cis-[Rh(bzpy)(phen)Cl2] is consistent with the cis-α structure. The strong σ-donor ability of the metallated phenyl ring of bzpy can move the metal d*(eg) orbitals to higher energy, resulting in the dd* emission of cis β-Rh(bipy)(bzpy)Cl2 and cis α-[Rh(bzpy)(phen)Cl2] observed at higher energy than that of cis-[Rh(bipy)2Cl2]+ and cis-[Rh(phen)2Cl2]+. In other word, bzpy exhibits the higher ligand field strength compared with that of bipy or phen.

      The last part is focused on the X-ray crystal structure of cis-[Rh(dpk)2- Cl2][Rh(dpk)Cl4], trans-[Rh(dpk)2Cl2]ClO4, and cis-[Rh(dpk)2Cl2]ClO4 as well as the photophysical studty of trans-[Rh(dpk)2Cl2]ClO4. In the quasi-octahedral cation of cis-[Rh(dpk)2Cl2][Rh(dpk)Cl4], Rh(III) is coordinated with two dpk ligands via two pairs of nitrogen atoms and with two cis chloro ligands. The torsional angles between the pyridyl and the carbonyl group is 35.6(5)o for trans-[Rh(dpk)2Cl2]ClO4; whereas the corresponding angles for cis-[Rh(dpk)2Cl2]ClO4 are 26.7(12)o and 26.1(11)o. The former dpk are evidently more distorted due to the larger steric repulsion of the trans conformation. The trans conformer is more rigid than the cis conformer. Both at room temperature and 77K, trans-[Rh(dpk)2Cl2]ClO4 exhibits red emission, assigned as 3dd* phosphorescence.

    表目錄 I 圖目錄 II Ⅰ、含二亞胺(酮)及2-苯基吡啶之混配基型銥(III) 錯合物的合成、結構鑑定、光物理及電化學性質的探討 1 壹、緒論 1 貳、實驗部分 7 I. 儀器設備 7 Ⅱ. 藥品 9 Ⅲ. 錯合物的製備 10 參、結果與討論 14 一、錯合物的合成及結構鑑定 Ⅰ. 合成 14 Ⅱ. X-ray繞射結構圖 15 Ⅲ. 質譜 20 Ⅳ. 紅外線光譜 23 Ⅴ. 核磁共振光譜 27 二、光物理性質 53 Ⅰ. 紫外-可見光吸收光譜 53 Ⅱ. 放光及放光極化光譜 60 三、電化學性質 75 肆、結論 87 伍、參考文獻 89 Ⅱ、含2-苯基酮吡啶之銠(III)錯合物的合成、 結構鑑定、光物理及電化學性質的探討 壹、緒論 94 貳、實驗部分 96 Ⅰ. 藥品及儀器 96 Ⅱ. 錯合物的製備 96 參、結果與討論 Ⅰ. 錯合物的合成及結構鑑定 98 Ⅱ. 光物理性質 108 Ⅲ. 電化學性質 110 肆、結論 112 五、參考文獻 113 Ⅲ、銠(III)金屬對稱二亞胺酮錯合物的合成、結構、 光物理性質的探討 壹、緒論 116 貳、實驗部分 118 Ⅰ. 藥品及儀器 118 Ⅱ. 錯合物的製備 118 參、結果與討論 Ⅰ. 合成與鑑定 120 Ⅱ. 光物理性質 135 肆、結論 138 伍、參考文獻 139

    Ⅰ、含二亞胺(酮)及2-苯基吡啶之混配基型銥(III)錯合物的
    合成、結構鑑定、光物理及電化學性質的探討
    1. Silbey, R. J.; Alberty, R. A. Physical Chemistry, Massachusetts, 1992.
    2. Crosby, G. A.; Perkins, W. G.; Klassen, D. M. J. Chem.Phys. 1965, 43, 1498.
    3. Klassen, D. M.; Crosby, G. A. J. Chem. Phys. 1968, 48, 1853.
    4. Lytle, F. E.; Hercules, D. M. J. Am. Chem. Soc. 1969, 91, 253.
    5. Houten, J. V.; Watts, R. J. Inorg. Chem. 1978, 17, 3381.
    6. Fink, D.W.; Ohnesorge, W. E. J. Am. Chem. Soc. 1969, 91, 4995.
    7. Yersin, H.; Gallhuber, E. J. Am. Chem. Soc. 1984, 106, 6582.
    8. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Zelewsky, A.V. Coord. Chem. Rev. 1988. 84, 85.
    9. Suen, H. F.; Wilson, S. W.; Pomerantz, M.; Walsh, J. L. Inorg. Chem. 1989, 28, 786.
    10. Ross, H. B.; Boldaji, M.; Rillema, D. P.; Blanton, C.B.; White, R. P. Inorg. Chem. 1989, 28, 1013 .
    11. Fleischauer, P. D.; Adamson, A. W.; Sartori, G. Inorg. Chem. 1972, 17, 1.
    12. DeArmond, M. K.; Myrick, M. L.; Pittman, R.; EesEnfants, R. E. Coord. Chem. Rev. 1990, 97, 261.
    13. Carstens, D.H.W.; Crosby, G.A. J. Mol. Spectrosc. 1970, 34, 113
    14. DeArmond, M. K.; Hillis, J. E. J. Chem. Phys. 1971, 54, 2247.
    15. Crosby, G. A. J. Chem. Educ. 1983, 60, 791.
    16. DeArmond, M. K.; Hillis, J. E. J. Chem. Phys. 1971, 54, 2247.
    17. Carstens, D. H. W.; DeArmond, M. K. and J. E. Hillis, J. Chem. Phys. 1971, 54, 2247.
    18. Segers, D. P.; DeArmond, M. K. J. Phys. Chem. 1982, 86, 3768.
    19. Huang, W. L.; P.Segers, D.; Dearmord, M. K. J. Phys. Chem. 1981, 85, 2080.
    20. Tseng, M. C.; Li, F. K.; Huang, J. H.; Su, W. L.; Wang, S. P.; Huang, W. L. Inorg. Chim. Acta 2006, 359, 401.
    21. DeArmond, M. K.; Huang, W. L.; Carlin, C. M. Inorg. Chem. 1979, 18, 3388.
    22. Crosby, G. A.; Watts, R. J.; Carstens, D. H. W. Science 1970, 170, 1195.
    23. Ballardini, R.; Varani, G.; Moggi, L.; Balzani, V. J. Am. Chem. Soc. 1977, 99, 6881.
    24. Lee, J. R.; Liou, Y. R.; Huang, W. L. Inorg. Chim. Acta 2001, 319, 83.
    25. Maestri, M.; Sandrini, D.; Balzni, V.; Chassot, L.; Jolliet, P.; Zelewsky, A. V. Chem. Phys. Lett. 1985, 122, 375.
    26. King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1985, 107,1431.
    27. Sprous, S.; King, K. A.; Spellane, P. J.; Watts, R. J.J. Am. Chem. Soc. 1984, 106, 6647.
    28. Wilde, A. P.; Watts, R. J. J. Phys. Chem., 1991, 95, 662.
    29. Merril, J. T.; DeArmond, M. K. J. Am. Chem. Soc. 1979, 101, 2045.
    30. Didier, P.; Ortmans, I.; Kirsch-DeMesmaeker, A.; Watts, R. J. Inorg. Chem. 1993, 32, 5239.
    31. Oh sawa, Y.; Sprouse, S.; King, K. A.; DeArmond, M. K.; Hanck. K. W.;Watts, R. J. J. Phys. Chem. 1987, 91, 1047.
    32. Maestri, M.; Sandrini, D.; Balzani, V.; Mader, U.; von Zelewsky, A. Inorg. Chem. 1987, 26, 1323.
    33. Ortmans, I.; Didier, P.; Kirsch-De Mesmaeker, A. Inorg. Chem. 1995, 34, 3695.
    34. Djurovich, P. I.; Watts, R. J. Inorg. Chem. 1993, 2, 4681.
    35. (a) Polson, M.; Ravaglia, M.; Fracasso, S.; Garavelli, M.; Scandola, F. Inorg. Chem. 2005, 44, 1282.
    (b) Neve, F.; La Deda, M.; puntoriero, F; Campagna, S. Inorg. Chim. Acta 2006, 359, 1666.
    (c) Neve, F.; La Deda, M.; Crispini, A.; Bellusci, A.; Puntoriero, F.; Campagna, S. Organometallics, 2004, 23, 5856;
    36. Weigert, F. Verh. Dtsch. Phys. Ges. 1920, 1, 100.
    37. Vavilov, S. I.; Levshin,V. L. Z. Phys. 1923, 16, 136.
    38. Perrin, F. J. Phys. Radium. 1926, 7, 390.
    39. Jablonski, A. Z. Phys. 1936, 96, 236.
    40. Albrecht, A. C.; Simpson, W. T. J. Am. Chem. Soc. 1955, 77, 4454.
    41. Albrecht, A. C. J. Mol. Spectrosc. 1961, 6, 84.
    42. EI-Sayed, M.A. J. Chem. Phys. 1963, 38, 2838.
    43. EI-Sayed, M.A. Acc. Chem. Res. 1968, 1, 8.
    44. Fujita, I.; Kobayashi, H. Inorg. Chem. 1973, 12, 2758.
    45. Andrews, L. J. J. Inorg. Chem. 1978, 17, 3180.
    46. 蔡承遠碩士論文, 國立成功大學化學研究所, 1992 .
    47. Myrick, M. L.; DeArmond, M. K. J. Phy. Chem. 1989, 93, 7099.
    48. Tanaka, N.; Ogato, T.; Niizuma, S. Bull. Chem. Soc. Jap. 1973, 46, 3299.
    49. Saji, T.; Aoyagni, S. J. Electroanal. Chem. 1975, 58, 401.
    50. Takvoryan, N. T.; Hemingway, R. E.; Bard, A. J. J. Am. Chem. Soc. 1973, 95, 6582.
    51. Houten, J. V.; Watts, R. J. J. Am. Chem. Soc. 1976, 98, 4853.
    52. Watts, R. J.; Harrington, J.; Houten, J. V. J. Am. Chem. Soc. 1977, 99, 2179.
    53. Flynn, C.; Demas, J. J. Am. Chem. Soc. 1974, 96, 1959.
    54. Kew, G.; DeArmond, M. K.; Hanck, K. J. Phys. Chem. 1974, 78, 727.
    55. Kew, G.; Hanck, K.; DeArmond, M. K. J. Phys. Chem. 1975, 79, 1828.
    56. Gillard, R. D.; Osborn, J. A.; Wilkinson, G. J. Chem. Soc. 1965, 4107.
    57. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razaq, R. Kong, I. Tsyba, M. Bortz, B. Mui, R. Bau and M. E. Thompson, Inorg. Chem., 2001, 40, 1704.
    58. Huang, Y. T.; Chuang, T. H.; Shu, Y. L.; Kuo, Y. C.; Wu, P. L.; Yang, C. H.; Sun, I. W. Organometallics, 2005, 24, 6230.
    59. Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. Chem. Mater., 2004, 16, 4743.
    60. Li, J.; Djurovich, P. I.; Alleyne, B. D.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. Polyhedron, 2004, 23, 419.
    61. Yeh, S. J.; Wu, W. C.; Chen, C. T.; Song, Y. H.; Chi, Y.; Ho, M. H.; Hsu, S. F.; Chen, C. H. Adv. Mater., 2005, 17, 285.
    62. Slinker, J. D.; Gorodetsky, A. A.; Lowry, M. S.; Wang, J.; Parker, S.; Rohl, R.; Bernhard, S.; Malliaras, G. G. J. Am. Chem. Soc., 2004, 126, 2763.
    63. (a) Garces, F. O.; King, K. A.; Watts, R. J. Inorg. Chem., 1988, 27, 3464;
    (b) Calogero, G.; Giuffrida, G.; Serroni, S.; Ricevuto, V.; Campagna, S. Inorg. Chem., 1995, 34, 541;
    (c) Neve, F.; Crispini, A.; Campagna, S.; Serroni, S. Inorg. Chem., 1999, 38, 2250;
    (d) Neve, F.; Crispini, A.; Loiseau, F.; Campagna, S. J. Chem. Soc. Dalton Trans., 2000, 1399;
    (e) Neve, F.; Crispini, A.; Serroni, S.; Loiseau, F.; Campagna, S. Inorg. Chem., 2001, 40, 1093;
    (f) Lo, K. K.-W.; Chung, C.-K.; Lee, T. K.-M.; Lui, L.-H.; Tsang, K. H.-K.; Zhu, N. Inorg. Chem., 2003, 42, 6886;
    (g) Plummer, E. A.; Hofstraat, J. W.; De Cola, L.; Dalton Trans., 2003, 2080;
    (h) Lo, K. K.-W.; Chung, C.-K.; Zhu, N.; Chem. Eur. J. 2003, 9, 475;
    (i) Lo, K. K.-W.; Chan, J. S.-W.; Chung, C.-K.; Tsang, V. W.-H.; Zhu, N. Inorg. Chem. Acta., 2004, 357, 3109;
    (j) Lo, K. K.-W.; Hui, W.-K.; Chung, C.-K.; Tsang, K. H.-K.; Ng, D. C.-M.; Zhu, N.; Cheung, K.-K.. Coord. Chem. Rev., 2005, 249, 1434;
    (k) Lo, K. K.-W.; Li, C.-K.; Lau, J. S.-Y. Organometallics, 2005, 24, 4594;
    (l) Neve, F.; Deda, M. L.; Puntoriero, F.; Campagna, S.; Inorg. Chem. Acta. 2006, 359, 1666;
    (m) Lo, K. K.-W.; Chung, C.-K.; Zhu, N. Chem. Eur. J. 2006, 12, 1500.
    64. (a) Dedeiean, K.; Djurovich, P. I.; Garces, F. O.; Carslon, G.; Watts, R. J. Inorg. Chem., 1991, 30, 1685;
    (b) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc., 2001, 123, 4304;
    (c) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem., 2001, 40, 1704;
    (d) Ostrowski, J. C.; Robinson, M. R.; Heeger, A. J.; Bazan, G. C.; Chem. Commun., 2002, 784;
    (e) DeRosa, M. C.; Hodgson, D. J.; Enright, G. D.; Christopher, B. D.; Evans, E. B.; Crutchley, R. J. J. Am. Chem. Soc., 2004, 126, 7619;
    (f) Coppo, P.; Plummer, E. A.; De Cola, L.; Chem. Commun., 2004, 1774;
    (g) Hwang, F.-M.; Chen, H.-Y.; Chen, P.-S.; Liu, C.-S.; Chi, Y.; Shu, C.-F.; Wu, F.-I.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 2005, 44, 1344;
    (h) Takizawa, S.-Y.; Nishida, J.-I.; Tsuzuki T.,; Tokito, S.; Yamashita, Y. Chem. Lett. 2005, 34, 1222;
    (i) Okada, S.; Okinaka, K.; Iwawaki, H.; Furugori, M.; Hashimoto, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Tsuboyama, A.; Takiguchi, T.; Ueno, K. Dalton Trans., 2005, 1583;
    (j) Dedeian, K.; Shi, J.; Shepherd, N.; Forsythe, E.; Morton, D. C. Inorg. Chem., 2005, 44, 4445;
    (k) Laskar, I. R.; Hsu, S.-F.; Chen, T.-M.; Polyhedron, 2005, 24, 189;
    (l) Laskar, I. R.; Hsu, S.-F.; Chen, T.-M. Polyhedron, 2006, 25, 1167;
    (m) Ragni, R.; Plummer, E. A.; Brunner, K.; Hofstraat, J. W.; Babudri, F.; Farinola, G. M.; Naso, F.; De Cola, L. J. Mater. Chem. 2006, 16, 1161;
    (n) Chew, S.; Lee, C. S.; Lee, S.-T.; Wang, P.; He, J.; Li, W.; Pan, J.; Zhang, X.; Kwong, H. Appl. Phys. Lett., 2006, 88, 93510.
    65. (a) Richter, M. M. Chem. Rev. 2004, 104, 3003.
    (b) Kim, J. I.; Shin, I. S.; Kim, H.; Lee, J. K. J. Am. Chem. Soc., 2005, 127, 1614.
    66. (a) Tamayo, A. B.; Garon, S.; Sajoto, T.; Djurovich, P. I.; Tsyba, I. M.; Bau, R.; Thompson, M. E. Inorg. Chem., 2005, 44, 8723;
    (b) Yang, C.-H.; Li, S.-W.; Chi, Y.; Cheng, Y.-M.; Yeh, Y.-S.; Chou, P.-T.; Lee, G.-H.; Wang, C.-H.; Shu, C.-F. Inorg. Chem., 2005, 44, 7770;
    (c) Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau, R.; Thompson, M. E.; Holmes, R. J.; Forrest, S. R.; Inorg. Chem., 2005, 44, 7992;
    (d) Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E.; J. Am. Chem. Soc. 2003, 125, 7377.
    67.Canty, A. J.; George, E. E.; Lee, C. V. Aust. J. Chem. 1983, 21, 415
    68. Osborne, R. R.; McWhinnie, W. R. J. Chem. Soc. A 1968, 2153.
    69. Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compound, 5th ed. Wiley, New Youk, 1991.
    70. 黃暁瑜碩士論文, 國立成功大學化學研究所, 1995 .
    71. Huheey, J. E.; Keiter, R. L. Inorgnaic Chemistry: Principles of structure and reactivity, 4th edition, Harper Collins College Publishers, New York, 1993, P.439.
    72. Huang, W. L.; Lee, J. R.; Shi, S. Y.; Tsai, C. Y. Transition Met. Chem. 2003, 28, 381.

    Ⅱ、含2-苯基酮吡啶之銠(III)錯合物的合成、結構鑑定、
    光物理及電化學性質的探討
    1. Sprouse, S.; King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1984, 106, 6647.
    2. King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1985, 107, 1431.
    3. Colombo, M. G.; Brunold, T. C.; Riedener, T.; Güdel, H. U.; Förtsch, M.; Bürgi, H.-B. Inorg. Chem. 1994, 33, 545.
    4. Didier, P.; Ortmans, I.; Mesmaeker, A. K.-D.; Watts, R. J. Inorg. Chem. 1993, 32, 5239.
    5. Ortmans, I.; Didier, P.; Mesmaeker, A. K.-D. Inorg. Chem. 1995, 34, 3695;
    6. Calogero, G.; Giuffrida, G.; Serroni, S.; Ricevuto, V.; Campagna, S. Inorg. Chem. 1995, 34, 541.
    7. Neve, F.; Crispini, A.; Campagna, S.; Serroni, S. Inorg. Chem. 1999, 38, 2250;
    8. Lo, K. K.-W.; Chung, C.-K.; Lee, T. K.-M.; Lui, L.-H.; Tsang, K. H.-K.; Zhu, N. Inorg. Chem. 2003, 42, 6886.
    9. Maestri, M.; Sandrini, D.; Balzani, V.; Maeder, U.; Zelewsky, A. V. Inorg. Chem. 1987 , 26, 1323.
    10. Sandrini, D.; Maestri, M.; Balzani, V.; Maeder, U.; Zelewsky, A. V. Inorg. Chem. 1988 , 27, 2640.
    11. Kovala-Demertzi, D.; Michaelides, A.; Aubry, A. Inorg. Chim. Acta 1992, 194, 189.
    12. Pettinari, C.; Accorroni, F.; Cingolani, A.; Marchetti, F.; Cassetta, A.; Barba, L. J. Organomet. Chem. 1998, 566, 187.
    13. Ahuja, I. S.; Yadava, C. L. Indian J. Chem., Sect. A 1988, 27, 169.
    14. Rehder, D.; Ihmels, K. Inorg. Chim. Acta 1983, 76, L313;
    15. Abu-Youssef, M. A. M.; Escuer, A.; Gatteschi, D.; Goher, M. A. S.; Mautner, F. A.; Vicente, R. Inorg. Chem. 1999, 38, 5716.
    16. Plytzanopoulos, M.; Pneumatikakis, G.; Hadjiliadis, N.; Katakis, D. J. Inorg. Nucl. Chem. 1977, 39, 965.
    17.(a) Goher, M. A. S.; Mak, T. C. W. Inorg. Chim. Acta 1985, 99, 223;
    (b) T. C. W. Mak,; M. A. S. Goher,; Inorg. Chim. Acta 1986, 115, 17;
    (c) Goher, M. A. S.; Wang, R.-J.; Mak, T. C. W. J. Crystallogr. Spectrosc. Res. 1990, 20, 265;
    (d) F. A. Mautner, M. A. S. Goher, A. E. H. Abdou, Polyhedron 12 (1993) 2815;
    (e) Goher, M. A. S.; Abdou, A. E. H.; Yip, W.-H.; Mak, T. C. W.; Polyhedron 1993, 12, 2981;
    (f) Bellachioma, G.; Cardaci, G.; Gramlich, V.; Macchioni, A.; Valentini, M.; Zuccaccia, C. Organometallics 1998, 17, 5025;
    (g) Sudbrake, C.; Vahrenkamp, H. Inorg. Chim. Acta 2001, 318, 23;
    (h) Reger, D. L.; Gardinier, J. R.; Smith, M. D.; Pellechia, P. J. Inorg. Chem. 2003, 42, 482;
    (i) Milios, C. J.; Stamatatos, T. C.; Kyritsis, P.; Terzis, A.; Raptopoulou, C. P.; Vicente, R.; Escuer, A.; Perlepes, S. P. Eur. J. Inorg. Chem. 2004, 2885.
    18. Steel, P. J.; Caygill, G. B. J. Organomet. Chem. 1987, 327, 101.
    19. Fuchita, Y.; Hiraki, K.; Kage, Y. Bull. Chem. Soc. Jpn. 1982, 55, 955.
    20. Aiello, I.; Crispini, A.; Ghedini, M.; Deda, M. L.; Barigelletti, F. Inorg. Chim. Acta 2000, 308, 121.
    21. Fuchita, Y.; Ieda, H.; Tsunemune, Y.; Kinoshita-Nagaoka, J.; Kawano, H. J. Chem. Soc., Dalton Trans. 1998, 791.
    22. de Geest, D. J.; Steel, P. J. Aust. J. Chem. 1995, 48, 1573.
    23. 柯金蓮碩士論文,國立成功大學化學系研究所,1998.
    24. Gillard, R. D.; Heaton, B. T. J. Chem. Soc. A 1969, 451.
    25. N. Kazuo, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd edit, John Wiley & Sons, New York (1978) pp.317-324
    26. 白倉吉碩士論文,國立成功大學化學系研究所,2002.
    27. DeArmond, M. K.; Hillis, J. E. J. Chem. Phys. 1971, 54, 2247.
    28. Huang, W. L.; Lee, J. R.; Shi, S. Y.; Tsai, C. Y. Transition Met. Chem. 2003, 28, 381.
    29. Ortego, J. D.; Seymour, M. J. Polyhedron 1982, 1, 21.
    30.(a) Favaro, G. J. Chem. Soc. Perkin II 1976, 869;
    (b) Latas, K. J.; Power, R. K.; Nishimura, A. M. Chem. Phys. Lett. 1979, 65, 272.
    31. Krause, R. A.; Krause, K.; Inorg. Chem. 1980, 19, 2600.
    32. Krause, R. A.; Krause, K.; Inorg. Chem. 1984, 23, 2195.
    33. Kolle, U.; Grutzel, M.; Angew. Chem. Int. Ed. Engl. 1987, 26, 567.
    34. Sharp, P. R.; Frank, K. G. Inorg. Chem. 1985, 24, 1808.
    35. Bradbury, J. R.; Schultz, F. A. Inorg. Chem. 1986, 25, 4408.
    36. Ladwig, M.; Kaim, W. J. Organomet. Chem. 1991, 419, 233.
    37. W. Bruns, W. Kaim, M. Ladwig, B. Olbrich-Deussner, T. Roth, B. Schwederski, in “ Molecular Electrochemistry of Inorganic, Bioinorganic and Organometallic Compounds ”, A. J. L. Pombeiro, J. A. Eds. McCleverty, Kluwer Academic Publichers, 1993, 255-268.
    38. Kew, G.; DeArmond, K.; Hanck, K. J. Phys. Chem. 1974, 78, 727.
    39. Kew, G.; Hanck, K.; DeArmond, M. K. J. Phys. Chem. 1975, 79, 1828.

    Ⅲ、銠(III)金屬對稱二亞胺酮錯合物的合成、結構、
    光物理性質的探討
    1. Osborne, R. R.; McWhinnie, W. R. J. Chem. Soc. (A) 1967, 2075
    2. Feller, M. C.; Robson, R. Aust. J. Chem. 1968, 21, 2919.
    3. Osborne, R. R.; McWhinnie, W. R. J. Less. Common. Metals. 1969, 17, 53.
    4. Huang, W. L.; Lee, J. R.; Shi, S. Y.; Tsai, C. Y. Transition Met. Chem. 2003, 28, 381.
    5. 蔡承遠碩士論文,國立成功大學化學研究所,1992.
    6. 許世源碩士論文,國立成功大學化學研究所,1994.
    7.Calvert, J. M.; Caspar, J. V.; Binstead, R. A.; Westmoreland, T. D.;Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 6620.
    8. Bradley, P. M.; Bursten, B. E.; Turro, C. Inorg. Chem. 2001, 40, 1376.
    9. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Zelewsky, A. v. Coord. Chem. ReV. 1988, 84, 85.
    10. Armaroli, N. Chem. Soc. Rev. 2001, 30, 113.
    11. Tocher, D. A.; Pal, P. K.; Datta, D. Inorg. Chem. 2003, 42, 7704.

    下載圖示 校內:2008-07-17公開
    校外:2009-07-17公開
    QR CODE