簡易檢索 / 詳目顯示

研究生: 張家瑄
Zhang, Jia-Xuan
論文名稱: 高溫質子交換膜燃料電池於一氧化碳及溢入空氣條件下之特性
The Characteristics of High Temperature Proton Exchange Membrane Fuel Cells with CO and Air-bleeding on the Anode Side
指導教授: 王振源
Wang, Chen-Yuan
賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 106
中文關鍵詞: 高溫質子交換膜燃料電池一氧化碳毒化重組氣溢入空氣
外文關鍵詞: High temperature proton exchange membrane fuel cell, CO tolerance, reformate gas, air-bleeding
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池因具有潔淨、高效率等特性,使得此新興能源科技的發展倍受重視。然而由於氫氣難以運輸及儲存之故,近年來由重組器提供富氫之混合氣體成為提供燃料電池燃料的解決方案之一。此種富氫氣體皆需經過純化處理,才能使一氧化碳濃度降低至燃料電池能夠承受的範圍,因此,為使燃料電池對於一氧化碳容忍程度能夠提升,並且簡化純化過程,開發重組式高溫型質子交換膜燃料電池成為未來趨勢之一。本研究以此型燃料電池做為研究主題,探討高溫型質子交換膜燃料電池於一氧化碳及溢入空氣條件下之特性研究。
    本研究中,利用極化曲線、暫態電壓與電化學阻抗頻譜等方法進行燃料電池性能及阻抗之分析,探討參數包括電池溫度、氫氣濃度、一氧化碳濃度及溢入空氣之空氣濃度。實驗結果顯示,高溫型燃料電池對一氧化碳的容忍度隨著溫度上升而增加,在1%CO濃度、200 mA/cm2電流密度下,溫度由140增加至180oC時,電池性能增加29.33%,電池電壓輸出品質(SNR)增加14.12 dB;另外,降低氫氣濃度則會使一氧化碳對電池性能與阻抗之影響變得更顯著,在160oC、5% CO、電流密度200 mA/cm2時,H2濃度由40%提升到95%,SNR值上升14.6 dB。另一方面,溢入空氣,對於高溫型質子交換膜燃料電池性能改善較不明顯,在180oC、5% CO、電流密度為400 mA/cm2條件下,於陽極加入7.5% 空氣,電池平均電壓僅上升0.0234 V,但SNR值由9.96 dB增加到12.06 dB,說明溢入空氣能使電池輸出電壓品質提升。

    The development of the new energy technology, fuel cells, draws attention because they have the characteristics of being clen and high efficiency. Due to the difficulties of hydrogen transportation and storage, it becomes a tendency to use reformers to supply the hydrogen-rich reformate for the fuel cell system in recent years. However, the reformate gas produced from a reformer has to be purified in order to reduce the carbon monoxide concentration to a range which is tolerable for a PEMFC. Thus, the development of reformate HT-PEMFC besomes one of the trend of the evolution of fuel cells to improve the carbon monoxide tolerance of the fuel cell and to simplify the gas purification process of the reformate fuel cell system. This study selects this type of fuel cell as the research topic to explore the characteristics of HT-PEMFC with CO and air-bleeding on the anode side.
    In this study, the I-V curve, the long term constant current analysis and the electrochemical impedance spectroscopy are used to analyze the performance and the impedance of a HT-PEMFC. The control parameters include the operating temperature, CO, H2 and bleed air concentrations. The experimental results show that increasing the operating temperature increases the CO tolerance of the HT-PEMFC. The fuel cell performance is increased by 29.33% and the fuel cell voltage output quality, signal to noise ratio (SNR), is increased by 14.12 dB as the temperature increases from 140 to 180oC at 1% CO concentration and 200 mA/cm2 current density. In addition, effects of CO concentration on the cell performance and impedance become more significant as decreasing the hydrogen concentration. The SNR is increased by 14.6 dB as the H2 concentration increased from 40% to 95% at 160oC cell temperature, 5% CO concentration, 200 mA/cm2 current density. Moreover, the effect of air-bleeding on the improvement the HT-PEMFC under CO poisoning is not significant. The average voltage is only increased by 0.0234 V, but the SNR increased from 9.96 dB to 12.06 dB at the conditions of 180oC cell temperature, 5% CO concentration, 400 mA/cm2 current density and 7.5% air-bleeding. This indicates that the air-bleeding improves the output voltage quality of the fuel cell.

    中文摘要 I The Characteristics of High Temperature Proton Exchange Membrane Fuel Cells with CO and Air-bleeding on the Anode Side II 誌謝 V 目 錄 VI 表目錄 IX 圖目錄 X 符號 XIV 第 1 章 緒論 1 1-1 前言 1 1-2 研究動機與目的 4 1-3 文獻回顧 5 1-3-1 重組器 5 1-3-2 氮氣對於燃料電池之影響 5 1-3-3 二氧化碳對於燃料電池之影響 6 1-3-4 一氧化碳對於燃料電池之影響 8 1-3-5 添加其他合金 9 1-3-6 高溫型PEMFC 10 1-3-7 添加H2O2 11 1-3-8 Air-bleeding 13 第 2 章 基礎理論 18 2-1 燃料電池介紹 18 2-2 質子交換膜燃料電池基本構造 19 2-2-1 質子交換膜 19 2-2-2 電極觸媒層 20 2-2-3 氣體擴散層 20 2-2-4 氣密墊片 21 2-2-5 流道板 21 2-2-6 集電板 21 2-2-7 端板 22 2-3 質子交換膜燃料電池工作原理 23 第 3 章 實驗設備 25 3-1 燃料電池堆規格介紹 26 3-2 燃料電池測試平台 28 3-3 氣體混合機與流量控制器 30 3-4 多頻即時氣體分析儀 33 第 4 章 實驗方法 36 4-1 極化曲線 36 4-1-1 活化損失 37 4-1-2 歐姆損失 38 4-1-3 質傳損失 39 4-1-4 燃料穿透及內電流 40 4-2 暫態性能量測 42 4-3 訊號雜訊比 43 4-4 質子交換膜燃料電池電化學阻抗頻譜分析 44 4-5 等效電路模擬分析 46 4-6 實驗前置處理 51 4-7 實驗矩陣 52 第 5 章 結果與討論 55 5-1 一氧化碳濃度對高溫型PEMFC性能與阻抗之影響 55 5-1-1 不同溫度下,一氧化碳濃度之影響 55 5-1-2 利用Air-bleeding提高一氧化碳容忍度 66 5-2 稀釋氫氣對高溫型PEMFC性能與阻抗之影響 72 5-2-1 不同溫度下,氫氣濃度之影響 72 5-2-2 利用Air-bleeding提高一氧化碳容忍度 83 第 6 章 結論 89 參考文獻 91

    【1】 S. Kim, S. Shimpalee, J.W. Van Zee, The Effect of Reservoirs and Fuel Dilution on the Dynamic Behavior of a PEMFC, Journal of Power Sources, 137, pp. 43-52, 2004.
    【2】 S. Shimpalee, U. Beuscher, J.W. Van Zee, Investigation of Gas Diffusion Media inside PEMFC Using CFD Modeling, Journal of Power Sources, 163, pp. 480–489, 2006.
    【3】 陳君奇, 一氧化碳及氫氣濃度對燃料電池影響之研究, 國立成功大學航空太空工程學系碩士論文, 2010.
    【4】 C.Y. Chen, W.H. Lai, W.M. Yan, C.C. Chen, S.W. Hsu, Effects of nitrogen and carbon monoxide concentrations on performance of proton exchange membrane fuel cells with PteRu anodic catalyst, Journal of Power Sources, 243, pp. 138-146, 2013.
    【5】 T. Tingelöf, L. Hedström, N. Holmström, P. Alvfors, G. Lindbergh, The influence of CO2, CO and air bleed on thecurrent distribution of a polymer electrolyte fuel cell, International Journal of Hydrogen Energy, Vol. 33, pp.2064-2072, 2008.
    【6】 R.T Ralph, M.P. Hogarth, Catalysis for low temperature fuel cells, Platinum Met Rev, 46(3), pp. 117–35, 2002.
    【7】 W.M. Yan, H.S. Chu, M.X. Lu, F.B. Weng, G.B. Jung, C.Y. Lee, Degradation of proton exchange membrane fuel cells due to CO and CO2 poisoning, Journal of Power Sources, 188, pp. 141–147, 2009.
    【8】 Q. Li, R. He, Ji-An Gao, J. O. Jensen, and Niels. J. Bjerrum, The  CO  Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C, Journal of The Electrochemical Society, 150(12), pp. A1599-A1605, 2003.
    【9】 F. Zhou, S.J. Andreasen, S. K. Kær, J. O. Park , Experimental investigation of carbon monoxide poisoning effect on a PBI/H3PO4 high temperature polymer electrolyte membrane fuel cell: Influence of anode humidification and carbon dioxide, International Journal of Hydrogen Energy, 40, pp. 14932-14941, 2015.
    【10】 L. Hedstrom, T. Tingelof, P. Alvfors, G. Lindbergh, Experimental results from a 5 kW PEM fuel cell stack operated on simulated reformate from highly diluted hydrocarbon fuels: Efficiency, dilution, fuel utilisation, CO poisoning and design criteria, International Journal of Hydrogen Energy, 34, pp. 1508-1514, 2009.
    【11】 H.P. Dhar, L.G. Christner, A.K. Kush, Nature of CO Adsorption During H2 Oxidation in Relation to Modeling for CO Poisoning of a Fuel Cell Anode, Electrochemical Science And Technology, 143, , 1987.
    【12】 M.S. Wilson, C.R. Derouin, J. Valerio, S. Gottesfeld, Electrocatalysis Issues in Polymer Electrolyte Fuel Cells, United States, 1993.
    【13】 H.F. Oetjen, V.M. Schmidt, U. Stimming, F.Trila, Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas, Journal of the Electrochemical Society, Vol. 143, pp.3838-3842, 1996.
    【14】 R.J. Bellows, E.P. Marucchi-Soos, D.T. Buckley, Analysis of Reaction Kinetics for Carbon Monoxide and Carbon Dioxide on Polycrystalline Platinum Relative to Fuel Cell Operation, Industrial & Engineering Chemistry Research, 35, pp.1235-1242, 1996.
    【15】 A. Eichler, J. Hafner, Reaction channels for the catalytic oxidation of CO on Pt(1 1 1), Phys Rev B, 59(8), pp. 5960-5967, 1999.
    【16】 J. Zhang, T. Thampan, R. Datta, Influence of Anode Flow Rate and Cathode Oxygen Pressure on CO Poisoning of Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, 149, pp. 765-772, 2002.
    【17】 K.K. Bhatia, C.Y. Wang, Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed, Electrochimica Acta, 49, pp. 2333-2341, 2004.
    【18】 S. Jiménez, J. Soler, R.X. Valenzuela, L. Daza, Assessment of the Performance of a PEMFC in the Presence of CO, Journal of Power Sources, 151, pp. 69–73, 2005.
    【19】 H.S. Chu, C.P. Wang, W.C. Liao, W.M. Yan, Transient Behavior of Co Poisoning of the Anode Catalyst Layer of a Pem Fuel Cell, Journal of Power Sources, 159, pp.1071-1077, 2006.
    【20】 S.J. Andreasen, J.R. Vang, and S.K.Kaer, High Temperature PEM Fuel Cell Performance Characterisation with CO and CO2 Using Electrochemical Impedance Spectroscopy, International Journal of Hydrogen Energy, Vol. 36, pp.9815-9830, 2011.
    【21】 H.A. Gasteiger, N. Markovic, P.N. Ross, Jr., E.J. Cairns, CO Electrooxidation on Well-Characterized Pt-Ru Alloys, J. Phys. Chem., 98, pp. 617-625, 1994.
    【22】 F.B. de Mongeot, M. Scherer, B. Gleich, E. Kopatzki, R.J. Behm, CO Adsorption and Oxidation on Bimetallic Pt/Ru(0001) Surfaces– A Combined Stm and Tpd/Tpr Study, Surface Science, 411, pp. 249–262, 1998.
    【23】 B. N. Grgur, N. M. Markovic, P. N. Ross, The Electro-Oxidation of H2 and H2/CO Mixtures on Carbon-Supported PtxMoy Alloy Catalysts, Journal of The Electrochemical Society, 146(5), pp. 1613-1619, 1999.
    【24】 S.J. Lee, S. Mukerjee, E.A. Ticianelli, J. McBreen, Electrocatalysis of CO Tolerance in Hydrogen Oxidation Reaction in Pem Fuel Cells, Electrochimica Acta, 44, pp. 3283-3293, 1999.
    【25】 H. Zhang, Y. Wang, E.R. Fachini, C.R. Cabrera, Electrochemically Codeposited Platinum/Molybdenum Oxide Electrode for Catalytic Oxidation of Methanol in Acid Solution, Electrochemical and Solid-State Letters, 2, pp.437-439, 1999.
    【26】 L. Giorgi, A. Pozio, C. Bracchini, R. Giorgi, S. Turtua, H2 and H2/CO Oxidation Mechanism on Pt/C, Ru/C and Pt-Ru/C Electrocatalysts, Journal of Applied Electrochemistry, 31, pp. 325-334, 2001.
    【27】 G.A. Camara, E.A. Ticianelli, S. Mukerjee, S.J. Lee, J. McBreen, The CO Poisoning Mechanism of the Hydrogen Oxidation Reaction in Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, 149(6), pp. A748-A753, 2002.
    【28】 A.T. Haug, R.E. White, J.W. Weidner, W. Huang, Development of a Novel CO Tolerant Proton Exchange Membrane Fuel Cell Anode, Journal of The Electrochemical Society, 149(7), pp. A862-A867, 2002.
    【29】 A.T. Haug, R.E. White, J.W. Weidner, W. Huang, S. Shi, N. Rana, S. Grunow, T.C. Stoner, A.E. Kaloyeros, Using Sputter Deposition to Increase CO Tolerance in a Proton-Exchange Membrane Fuel Cell, Journal of The Electrochemical Society, 149(7), pp. A868-A872, 2002.
    【30】 D.C. Papageorgopoulos, M. Keijzer, F.A. de Bruijn, The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes, Electrochim Acta, 48(2), pp. 197-204, 2002.
    【31】 C. He, H.R. Kunz, J.M. Fenton, Electro-Oxidation of Hydrogen with Carbon Monoxide on Pt/Ru-Based Ternary Catalysts, Journal of The Electrochemical Society, 150(8), pp. A1017-A1024, 2003.
    【32】 T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara, Y. Miyazaki, Enhanced CO-Tolerance of Carbon-Supported Platinum and Molybdenum Oxide Anode Catalyst, Journal of The Electrochemical Society, 150, pp. A1225-A1230, 2003.
    【33】 R.C. Urian, A.F. Gullá, S. Mukerjee, Electrocatalysis of Reformate Tolerance in Proton Exchange Membranes Fuel Cells: Part I, Journal of Electroanalytical Chemistry, 554-555, pp. 307-324, 2003.
    【34】 Z. Qi, A. Kaufman, CO Tolerance of Low Loaded Pt/Ru Anodes for Pem Fuel Cell, Journal of Power Sources, 113, pp. 115-123, 2003.
    【35】 N. Wagner, M. Schulze, Change of Electrochemical Impedance Spectra During CO Poisoning of the Pt and Pt/Ru Anodes in a Membrane Fuel Cell (PEFC), Electrochimica Acta, 48, pp. 3899-3907, 2003.
    【36】 S. Mukerjee, R.C. Urian, S.J. Lee, E.A. Ticianelli, J. McBreen, Electrocatalysis of CO Tolerance by Carbon-Supported PtMo Electrocatalysts in Pemfcs, Journal of The Electrochemical Society, 151, pp. A1094-A1103, 2004.
    【37】 F. Maillard, G.Q. Lu, A. Wieckowski, U. Stimming, Ru-Decorated Pt Surfaces as Model Fuel Cell Electrocatalysts for CO Electrooxidation, J. Phys. Chem., 109, pp. 16230-16243, 2005.
    【38】 P.A. Adcock, S.V. Pacheco, K.M. Norman, F.A. Uribe, Transition Metal Oxides as Reconfigured Fuel Cell Anode Catalysts for Improved Co Tolerance: Polarization Data, Journal of The Electrochemical Society, 152(2), pp. A459-A466, 2005.
    【39】 J.H. Wee, and K.Y.Lee, Overview of the Development of CO-tolerant Anode Electrocatalysts for Proton-exchange Membrane Fuel Cells, Journal of Power Sources, 157, pp.128-135, 2006.
    【40】 F. Alcaide, Ó.S. Miguel, H.J. Grande, New Approach to Prepare Pt-Based Hydrogen Diffusion Anodes Tolerant to CO for Polymer Electrolyte Membrane Fuel Cells, Catalysis Today, 116, pp. 408–414, 2006.
    【41】 D.A. Stevens, J.M. Rouleau, R.E. Mar, R.T. Atanasoski, A.K. Schmoeckel, M.K.Debe, J.R. Dahn, Enhanced CO-Tolerance of Pt–Ru–Mo Hydrogen Oxidation Catalysts, Journal of The Electrochemical Society, 154(12), pp. B1211-B1219, 2007.
    【42】 Y. Kawasoe, S. Tanaka, T. Kuroki, H. Kusaba, K. Ito, Y. Teraoka, K. Sasaki, Preparation and Electrochemical Activities of Pt–Ti Alloy Pefc Electrocatalysts, Journal of The Electrochemical Society, 154, pp. B969-B975, 2007.
    【43】 W. Shi, B. Yi, M. Hou, Z. Shao, The Effect of H2 and CO Mixtures on Pemfc Performance, International Journal of Hydrogen Energy, 32, pp. 4412-4417, 2007.
    【44】 D.J. Ham, Y.K Kim, S.H. Han, J.S. Lee, Pt/WC as an Anode Catalyst for PEMFC: Activity and CO Tolerance, Catalysis Today, 132, pp. 117–122, 2008.
    【45】 A.C. Garcia, V.A. Paganin, E.A. Ticianelli, CO Tolerance of Pd/Pt/C and Pd/Pt/Ru/C Anodes for Pemfc, Electrochimica Acta, 53, pp. 4309–4315, 2008.
    【46】 L.G.S. Pereira, V.A. Paganin, E.A. Ticianelli, Investigation of the CO Tolerance Mechanism at Several Pt-Based Bimetallic Anode Electrocatalysts in a PEM Fuel Cell, Electrochimica Acta, 54, pp. 1992–1998, 2009.
    【47】 L.G.S. Pereira, V.A. Paganin, E.A. Ticianelli, Investigation of the CO Tolerance Mechanism at Several Pt-Based Bimetallic Anode Electrocatalysts in a Pem Fuel Cell, Electrochimica Acta, 54, pp. 1992-1998, 2009.
    【48】 A.D. Modestov, M.R. Tarasevich, V.Ya. Filimonov, E.S. Davydova, CO tolerance and CO oxidation at Pt and Pt-Ru anode catalysts in fuel cell with polybenzimidazole-H3PO4 membrane., Electrochimica Acta, 55, pp. 6073-080, 2010.
    【49】 J.E. Hu, Z. Liu, B.W. Eichhorn, G.S. Jackson, CO tolerance of nano-architectured Pt–Mo anode electrocatalysts for PEM fuel cells,, International Journal of Hydrogen Energy, 37, pp. 11268-11275, 2012.
    【50】 R. Bashyam, P. He, S. Wessel, S. Knights, Impacts of cathode loading on Ru crossover related PEFC durability, ECS Trans, 41, pp. 837-44, 2011.
    【51】 S. M. M. Ehteshami, S. H. Chana,, A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells, Electrochimica Acta, 93, pp. 334-345, 2013.
    【52】 S. Authayanun, A. Arpornwichanop, Y. Patcharauorachot, W. Wiyaratn, and S. Assabumrungrat, Hydrogen Production from Glycerol Steam Reforming for Low- and High-temperature PEMFCs, International Journal of Hydrogen Energy, 36, pp.267-275, 2011.
    【53】 C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A.B. Bocarsly, Approaches and Technical Challenges to High Temperature Operation of Proton Exchange Membrane Fuel Cells, Journal of Power Sources, 103, pp.1-9, 2001.
    【55】 J.L. Zhang, Z. Xie, J.J. Zhang, Y.H. Tanga, C.J. Song, T. Navessin, Z.Q. Shi, D.T. Song, H.J. Wang, D.P. Wilkinson, Z.S. Liu, and S. Holdcroft, High Temperature PEM Fuel Cells, Journal of Power Sources, 160, pp.872-891, 2006.
    【55】 A.R. Korsgaard, R. Refshauge, M.P. Nielsen, M. Bang, and S.K. Kaer, Experimental Characterization and Modeling of Commercial Polybenzimidazole-based MEA Performance, Journal of Power Sources, 162, pp.239-245, 2006.
    【56】 P. Krishnan, J.S. Park, C.S. Kim, Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide, Journal of Power Sources, 159, pp. 817–823, 2006.
    【57】 C.Zhang , W. Zhou , M. M. Ehteshami , Y. Wangc, S. H. Chan, Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation, Energy Conversion and Management, 105, pp. 433–441, 2015.
    【58】 陳震宇, 溫度與溼度對PBI/H3PO4燃料電池特性影響之研究, 國立成功大學航空太空工程學系博士論文, 2010.
    【59】 J.J. Linares, C. Sanches, V.A. Paganin, E.R. Gonzalez, Performance of a poly(2,5-benzimidazole)-based polymer electrolyte membrane fuel cell, International Journal of Hydrogen Energy, 37, pp. 7212-7220, 2010.
    【60】 C.Y. Chen, W.H. Lai, Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell, Journal of Power Sources, 195, pp. 7152–7159, 2010.
    【61】 R. Radu, N. Zuliani, R. Taccani, Design and experimental characterization of a high-temperature proton exchange membrane fuel cell stack, Journal of Fuel Cell and Technology, 8, pp. 051007-1-051007-5, 2011.
    【62】 陳宜寬, 重組氣體對高溫型質子交換膜燃料電池影響之研究, 國立成功大學航空太空工程學系碩士論文, 2012.
    【63】 S.K. Das, A. Reis, K.J. Berry, Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell, Journal of Power Sources, 193, pp. 691–698, 2009.
    【64】 C.Y. Chen, W.H. Lai, Y.K. Chen, S.-S. Su, Characteristic studies of a PBI/H3PO4 high temperature membrane PEMFC under simulated reformate gases, International Journal of Hydrogen Energy, 39, pp. 13757-13762, 2014.
    【65】 Y. Devrim, A. Albostan, H. Devrim, Experimental investigation of CO tolerance in high temperature PEM fuel cells, International Journal of Hydrogen Energy, 43, pp. 8672-8681, 2018.
    【66】 R. J. Bellows, E. Marucchi Soos, R. P. Reynolds, The Mechanism of  CO  Mitigation in Proton Exchange Membrane Fuel Cells Using Dilute  H2O2 in the Anode Humidifier, Electrochem.Soc, 1(2), pp. 69-70, 1998.
    【67】 V. M. Schmidt, H.-F. Oetjen , J. Divisek, J., Performance Improvement of a PEMFC Using Fuels with CO by Addition of Oxygen‐Evolving Compounds., Electrochem. Soc, 144, pp. L237, 1997.
    【68】 J. Divisek, H.-F. Oetjen, V. Peinecke, V. M. Schmidt ,U. Stimming, Components for PEM fuel cell systems using hydrogen and CO containing fuels, Electrochimica Acta, 43, pp. 3811-3815, 1998.
    【69】 V.M. Schmidt, J.L. Rodrı´guez, E. Pastor, The influence of H2O2 on the adsorption and oxidation of CO on Pt electrodes in sulfuric acid solution, Journal of The Electrochemical Society, 148(4), pp. A293–8, 2001.
    【70】 J. Liao, J. Yang, Q. Li, L. N. Cleemann ,J. O. Jensen, N. J. Bjerrum, R. He, W. Xing, Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions., Journal of Power Sources, 238, pp. 516-22, 2013.
    【71】 V. Stamenkovic, B.N. Grgur, P.N. Ross, N.M. Markovic, Oxygen reduction reaction on Pt and Pt-bimetallic electrodes, Journal of The Electrochemical Society, 152(2), pp. A277–82, 2005.
    【72】 M. Inaba, M. Sugishita, J. Wada, K. Matsuzawa, H. Yamada, T. Akimasa, Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells, Journal of Power Sources, , pp. 699-705, 2008.
    【73】 S. Gottesfeld, J. Pafford, A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures, Journal of The Electrochemical Society, 135(10), pp. 2651–2, 1988.
    【74】 B. Rohland, V. Plzak, The PEMFC-Integrated CO Oxidation — a Novel Method of Simplifying the Fuel Cell Plant, Journal of Power Sources, 84, pp. 183–186, 1999.
    【75】 M. Murthy, M. Esayian, A. Hobson, S. MacKenzie, W.K. Lee, J.W. Van Zee, Performance of a Polymer Electrolyte Membrane Fuel Cell Exposed to Transient CO Concentrations, Journal of The Electrochemical Society, 148(10), pp. A1141-A1147, 2001.
    【76】 L. Gubler, G.G. Scherer, A. Wokaun, Effects of cell and electrode design on the CO tolerance of polymer electrolyte fuel cells, Phys Chem Chem Phys, 3, pp. 325-9, 2001.
    【77】 M. Murthy, M. Esayian, W. Lee, J. W. Van Zee, The Effect of Temperature and Pressure on the Performance of a PEMFC Exposed to Transient CO Concentrations, Journal of The Electrochemical Society, 150 (1), pp. A29-A34, 2003.
    【78】 F.A. Uribe, J.A. Valerio, F.H. Garzon, T.A. Zawodzinski, PEMFC Reconfigured Anodes for Enhancing CO Tolerance with Air Bleed, Electrochemical and Solid-State Letters, 7(10), pp. A376-A379, 2004.
    【79】 B. Du, R. Pollard, F. John, CO-Air Bleed Interaction and MEA Performance Degradation Study in PEM Fuel Cells, ECS Transactions, 3(1), pp. 705-713, 2006.
    【80】 M.C. Yang, C.H. Hsueh, Impedance Analysis of Working PEMFCs in the Presence of Carbon Monoxide, Journal of The Electrochemical Society, 153 (6), pp. A1043-A1048, 2006.
    【81】 W. Shi, M. Hou, Z. Shao, J. Hu, Z. Hou, P. Ming, B. Yi, A Novel Proton Exchange Membrane Fuel Cell Anode for Enhancing CO Tolerance, Journal of Power Sources, 174, pp. 164–169, 2007.
    【82】 Yim S-D, Sohn Y-J, Yoon Y-G, Um S, Kim C-S, Lee W-Y, Operating characteristics of 40 W-class PEMFC stacks using reformed gas under low humidifying conditions, J Power Sources, 178, pp. 711-5, 2008.
    【83】 C.H. Chen, C.C. Chung, H.H. Lin, Y.Y. Yan, Improvement of CO Tolerance of Proton Exchange Membrane Fuel Cell by an Air-Bleeding Technique, Journal of Fuel Cell Science and Technology, 5, pp.014501-1, 2008.
    【84】 H.S. Chu, F. Tsau, Y.Y. Yan, K.L. Hsueh, F.L. Chen, The Development of a Small PEMFC Combined Heat and Power System, Journal of Power Sources, 176, pp. 499–514, 2008.
    【85】 C.C. Chung, C.H. Chen, D.Z. Weng, Development of an air bleeding technique and specific duration to improve the CO tolerance of proton-exchange membrane fuel cells, Applied Thermal Engineering, 29, pp. 2518–2526, 2009.
    【86】 L.Y. Sung, B.J. Hwang, K.L. Hsueh, F.H. Tsau, Effects of anode air bleeding on the performance of CO-poisoned proton-exchange membrane fuel cells, Journal of Power Sources, 195, pp. 1630-1639, 2010.
    【87】 S. Knights, R. Bashyam, P. He, M. Lauritzen, C. Startek, V. Colbow, PEMFC MEA and system design considerations, ECS Transactions, 41, pp. 39-53, 2011.
    【88】 J. Scholta, J. Pawlik, N. Chmielewski, L. Jörissen, Longevity test results for reformate polymer electrolyte membrane fuel cell stacks, Journal of Power Sources, 196, pp. 5264-71, 2011.
    【89】 L.Y. Sung, B.J. Hwang, K.L. Hsueh, W.N. Su, C.C. Yang, Comprehensive study of an air bleeding technique on the performance of a proton-exchange membrane fuel cell subjected to CO poisoning, Journal of Power Sources, 242, pp. 264-272, 2013.
    【90】 L.C. Pérez, T. Rajala, J. Ihonen, P. Koski, J.M. Sousa, A. Mendes, Development of a methodology to optimize the air bleed in PEMFC systems operating with low quality hydrogen, International Journal of Hydrogen Energy, 38, pp. 16286-16299, 2013.
    【91】 M. Inaba, M. Sugishita, J. Wada, K. Matsuzawa, H. Yamada, A. Tasaka, Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells, Journal of Power Sources, 178, pp. 699–705, 2008.
    【92】 A.H. Thomason, T.R. Lalk, A.J. Appleby, Effect of Current Pulsing and “Self-Oxidation” on the CO Tolerance of a Pem Fuel Cell, Journal of Power Sources, 135, pp. 204–211, 2004.
    【93】 H. Lua, L. Rihko-Struckmanna, R. Hanke-Rauschenbach, K. Sundmacher, Improved Electrochemical CO Removal Via Potential Oscillations in Serially Connected Pem Fuel Cells with Ptru Anodes, Electrochimica Acta, 54, pp. 1184–1191, 2009.
    【94】 W.A. Adams, J. Blair, K.R. Bullock, C.L. Gardner, Enhancement of the Performance and Reliability of CO Poisoned Pem Fuel Cells, Journal of Power Sources, 145, pp. 55–61, 2005.
    【95】 F. Javier Pinar, Maren Rastedt, Nadine Pilinski, Peter Wagner, Alexander Dyck, Demonstrating feasibility of a high temperature polymer electrolyte membrane fuel cell operation with natural gas reformate composition, International Journal of Hydrogen Energy, 42, pp. 3860-3875, 2017.
    【96】 X.Z.Yuan, C. Song, H. Wang, and J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells : Fundamentals and Applications, Springer, 2010.
    【97】 E. Barsoukov, and J. Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, John Wiley & Sons, 2005.
    【98】 J.L. Zhang, Y.H. Tang, C.J. Song, and J.J. Zhang, AC Impedance Technique in PEM Fuel Cell Diagnosis - A Review, International Journal of Hydrogen Energy, 32, pp.4365-4380, 2007.
    【99】 N. Fouquet, C. Doulet, C. Nouillant, G. Dauphin-Tanguy, and Ould-Bouamama, B., Model Based PEM Fuel Cell State-of-health Monitoring via AC Impedance Measurements, Journal of Power Sources, 159, pp.905-913, 2006.

    無法下載圖示 校內:2022-05-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE