| 研究生: |
潘昭君 Pan, Zhao-Jun |
|---|---|
| 論文名稱: |
以同源性蘭花花被模式闡述蘭科植物花部形態發生 Homeotic Orchid Tepal (HOT) Model for Explicating Floral Morphogenesis in Orchidaceae |
| 指導教授: |
陳虹樺
Chen, Hong-Hwa |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 複合體形成 、趨異演化 、花發育 、蘭花 、蝴蝶蘭 、SEPALLATA基因 |
| 外文關鍵詞: | complex formation, divergent evolution, flower development, orchid, Phalaenopsis, SEPALLATA |
| 相關次數: | 點閱:142 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蘭科植物的花被由三片萼瓣、兩片側花瓣和中央花瓣特化的唇瓣所組成。研究報導顯示唇瓣對蘭花授粉扮演很重要的角色,蘭科植物的演化與其具有兩側對稱性的花朵有密切相關,而唇瓣的發育更是造成蘭科植物由擬蘭亞科具似百合輻射花形演化成兩側對稱花形的主要原因之ㄧ。本論文探討蘭花B群及E群MADS box基因參與蘭花花器決定的功能,並提出同源性蘭花花被模式 (Homeotic Orchid Tepal, HOT model) 進一步闡釋它們在蘭花花器發育所扮演之決定功能。首先,廣泛地研究分佈於5個亞科12個不同屬的蘭花B群基因。發現蘭科植物皆具有由二次基因複製產生的AP3A1/A2和AP3B1/B2四個分群以及PI同源性基因,具特化唇瓣蘭花之AP3A2同源基因在花瓣和唇瓣有差異性表現,且具有唇瓣專一性,並利用蘭花三唇瓣突變株驗證AP3A2基因的唇瓣專一性表現。其中不具顯著形態差異唇瓣之擬蘭亞科雖保有原始AP3A2同源基因,但是其可能尚未演化調控特化唇瓣的功能。基於這些研究結果,提出調控蘭花花被的Homeotic Orchid Tepal (HOT) model,說明由演化複製所產生之B群花器決定基因可參與蘭花花被之形成,特別是特化花器─唇瓣之發育。進一步研究蝴蝶蘭的四個E群基因PeSEPs,探討其基因表現、以酵母菌雙雜合實驗測試蛋白質交互作用,並以病毒誘導基因靜默檢驗其基因功能。PeSEP基因可參與或藉由影響B群基因表現調控表皮細胞形態大小、花青素及葉綠素形成,及表皮角質蠟生成而決定蘭花花萼、花瓣和唇瓣的發育。綜合以上,本研究釐清蘭花B和E群MADS box花器決定基因的分子調控關係,並了解其參與蘭花花被形態發生的重要功能。
The typical orchid floral morphology architecturally consists of three sepals, two petals, together with the most sophisticated lip, and colum. Previous studies reveal that lip plays a critical role in orchid pollination strategies. Orchid flower, remarkable for its zygomorphic syndrome, is intently related to the Orchidaceae evolutionary history. The evolution of lip is one of the major factors for orchid flower exhibiting zygomorphy to derived from the actinomorphy lily-like flower. This thesis investigates the B- and E-class MADS genes in determining orchid floral organ identities, and the Homeotic Orchid Tepal (HOT) model is proposed for explicating floral morphogenesis in Orchidaceae. Tweenty seven AP3-like and 14 PI-like genes from 12 species of orchids were widely identified. Homologous genes of PI clade and four duplicated AP3A1, AP3A2, AP3B1, and AP3B2 subclades were conserved in the orchid family. Among the four AP3 subclades, the lip specificity of orchid AP3A2 orthologs was demonstrated by the differential transcript between petal and lip of normal flowers and by the ectopic expression in lip-like petal of orchids with peloric flowers. Although an AP3A2-like gene was identified in lily-like Neuwiedia flower without obviously modified lip, the primitive AP3A2 maybe necessary but not sufficient for regulating lip development. Based on these results, the HOT model was proposed, in which dualistic characters of duplicated B-class MADS-box genes are involved in orchid perianth development and growth, especially the formation of the modified petal, lip. Furthermore, I functionally characterized the PeSEP genes that are uniformly expressed in all floral organs in respects of protein-protein interaction and gene expression by using of yeast two-hybrid and VIGS. PeSEPs themselves and possibly via regulating their downstream B-class genes involved in stimulating cell shape, cellular ultra-structures, floral pigmentation and cutin biosynthesis, but inhibiting features of leaf-like structures to determine the development of orchid sepals, petals and lip. Together, these studies have clarified the relationship of orchid B- and E-class MADS-box genes involved in the regulation of orchid floral organ identities and uncovered the critical roles in the obscure mystery of the orchid perianth morphogenesis.
Aceto S, Gaudio L. The MADS and the beauty: genes involved in the development of orchid flowers. Curr Genomics 12 (5):342-356. 2011.
Aceto S, Montieri S, Sica M, Gaudio L. Molecular evolution of the OrcPI locus in natural populations of Mediterranean orchids. Gene 392 (1-2):299-305. 2007.
Acri-Nunes-Miranda R, Mondragon-Palomino M. Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. Front Plant Sci 5:76. 2014.
Adam H, Jouannic S, Morcillo F, Richaud F, Duval Y, Tregear JW. MADS box genes in oil palm (Elaeis guineensis): patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA subfamilies. J Mol Evol 62 (1):15-31. 2006.
Almeida AM, Brown A, Specht CD. Tracking the development of the petaloid fertile stamen in Canna indica: insights into the origin of androecial petaloidy in the Zingiberales. AoB Plants 5:plt009. 2013.
Alvarez-Buylla ER, Ambrose BA, Flores-Sandoval E, Englund M, Garay-Arroyo A, Garcia-Ponce B, de la Torre-Barcena E, Espinosa-Matias S, Martinez E, Pineyro-Nelson A, et al. B-function expression in the flower center underlies the homeotic phenotype of Lacandonia schismatica (Triuridaceae). Plant Cell 22 (11):3543-3559. 2010.
Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130 (2):605-617. 2002.
Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S. MADS-box gene family in rice: genome-wide identification organization and expression profiling during reproductive development and stress. BMC Genomics 8:242. 2007.
Bateman RM, Rudall PJ. The good, the bad, and the ugly: using naturally occurring terata to distinguish the possible from the impossible in orchid floral evolution. Aliso 22:481-496. 2006.
Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29 (3):464-489. 2003.
Bowman JL. Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences 22 (4):515-527. 1997.
Bradshaw E, Rudall PJ, Devey DS, Thomas MM, Glover BJ, Bateman RM. Comparative labellum micromorphology of the sexually deceptive temperate orchid genus Ophrys: diverse epidermal cell types and multiple origins of structural colour. Botanical Journal of the Linnean Society 162 (3):504-540. 2010.
Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19 (8):2544-2556. 2007.
Buchner P, Boutin JP. A MADS box transcription factor of the AP1/AGL9 subfamily is also expressed in the seed coat of pea (Pisum sativum) during development. Plant Mol Biol 38 (6):1253-1255. 1998.
Cameron KM. Utility of plastid psaB gene sequences for investigating intrafamilial relationships within Orchidaceae. Mol Phylogenet Evol 31 (3):1157-1180. 2004.
Cameron KM, Chase MW, Whitten WM, Kores PJ, Jarrell DC, Albert VA, Yukawa T, Hills HG, Goldman DH. A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide. Am J Bot 86 (2):208-224. 1999.
Castillejo C, Romera-Branchat M, Pelaz S. A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J 43 (4):586-596. 2005.
Causier B, Cook H, Davies B. An Antirrhinum ternary complex factor specifically interacts with C-function and SEPALLATA-like MADS-box factors. Plant Mol Biol 52 (5):1051-1062. 2003.
Chang YY, Chiu YF, Wu JW, Yang CH. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 50 (8):1425-1438. 2009.
Chang YY, Kao NH, Li JY, Hsu WH, Liang YL, Wu JW, Yang CH. Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152 (2):837-853. 2010.
Chase MW. Classification of Orchidaceae in the age of DNA data. Curtis's Botanical Magazine 22 (1):2-7. 2005.
Chase MW, Cameron KM, Barrett RL, Freudenstein JV. DNA data and Orchidaceae systematics: a new phylogenetic classification. Orchid conservation 69:89. 2003.
Chen D, Guo B, Hexige S, Zhang T, Shen D, Ming F. SQUA-like genes in the orchid Phalaenopsis are expressed in both vegetative and reproductive tissues. Planta 226 (2):369-380. 2007.
Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, Lee YI, Liu KW, Chen LJ, Liu ZJ, Tsai WC. C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol 53 (6):1053-1067. 2012.
Chung MC, Lee YI, Cheng YY, Chou YJ, Lu CF. Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor Appl Genet 116 (6):745-753. 2008.
Chung YY, Kim SR, Finkel D, Yanofsky MF, An G. Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene. Plant Mol Biol 26 (2):657-665. 1994.
Cingel NAvd An atlas of orchid pollination : America, Africa, Asia and Australia. Rotterdam ; Brookfield, VT: A.A. Balkema Publishers. 2001.
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16 (6):735-743. 1998.
Cozzolino S, Widmer A. Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20 (9):487-494. 2005.
Crane PR, Herendeen P, Friis EM. Fossils and plant phylogeny. Am J Bot 91 (10):1683-1699. 2004.
Cubas P. Floral zygomorphy, the recurring evolution of a successful trait. Bioessays 26 (11):1175-1184. 2004.
Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61 (5):767-781. 2010.
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9 (8):772. 2012.
Darwin C The various contrivances by which orchids are fertilized by insects. London: Univ of Chicago Pr (T). 1885.
de Folter S, Angenent GC. trans meets cis in MADS science. Trends Plant Sci 11 (5):224-231. 2006.
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14 (21):1935-1940. 2004.
Dressler RL Orchid Phylogeny In: Dudley TR ed. Phylogeny and classification of the orchid family. Portland, Oregon: Dioscorides Press, 59-82. 1993a.
Dressler RL Phylogeny and classification of the orchid family. Portland, Or.: Dioscorides Press. 1993b.
Elitzur T, Vrebalov J, Giovannoni JJ, Goldschmidt EE, Friedman H. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene. J Exp Bot 61 (5):1523-1535. 2010.
Feng CM, Liu X, Yu Y, Xie D, Franks RG, Xiang QY. Evolution of bract development and B-class MADS box gene expression in petaloid bracts of Cornus s. l. (Cornaceae). New Phytol 196 (2):631-643. 2012.
Ferrario S, Immink RG, Shchennikova A, Busscher-Lange J, Angenent GC. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15 (4):914-925. 2003.
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151 (4):1531-1545. 1999.
Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, Lopez-Dee Z, Altamura MM, Colombo L, Kater MM. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135 (4):2207-2219. 2004.
Fu CH, Chen YW, Hsiao YY, Pan ZJ, Liu ZJ, Huang YM, Tsai WC, Chen HH. OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol 52 (2):238-243. 2011.
Fujisawa M, Nakano T, Ito Y. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol 11:26. 2011.
Fujisawa M, Shima Y, Higuchi N, Nakano T, Koyama Y, Kasumi T, Ito Y. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta 235 (6):1107-1122. 2012.
Glover BJ, Martin C. The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity 80:778-784. 1998.
Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132 (3):429-438. 2005.
Goto K, Meyerowitz EM. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8 (13):1548-1560. 1994.
Hernandez-Hernandez T, Martinez-Castilla LP, Alvarez-Buylla ER. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Mol Biol Evol 24 (2):465-481. 2007.
Honma T, Goto K. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127 (10):2021-2030. 2000.
Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409 (6819):525-529. 2001.
Hsiao YY, Huang TH, Fu CH, Huang SC, Chen YJ, Huang YM, Chen WH, Tsai WC, Chen HH. Transcriptomic analysis of floral organs from Phalaenopsis orchid by using oligonucleotide microarray. Gene 518 (1):91-100. 2012.
Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, Wu TS, Kuoh CS, Chen WH, Chen HH. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant J 55 (5):719-733. 2008.
Hsiao YY, Tsai WC, Kuoh CS, Huang TH, Wang HC, Wu TS, Leu YL, Chen WH, Chen HH. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biol 6:14. 2006.
Hsieh MH, Lu HC, Pan ZJ, Yeh HH, Wang SS, Chen WH, Chen HH. Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower. Plant Sci 201-202:25-41. 2013a.
Hsieh MH, Pan ZJ, Lai PH, Lu HC, Yeh HH, Hsu CC, Wu WL, Chung MC, Wang SS, Chen WH, et al. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids. Journal of Experimental Botany 64 (12):3869-3884. 2013b.
Hsu CC, Chung YL, Chen TC, Lee YL, Kuo YT, Tsai WC, Hsiao YY, Chen YW, Wu WL, Chen HH. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol 11:3. 2011.
Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 51 (6):1029-1045. 2010.
Hsu HF, Huang CH, Chou LT, Yang CH. Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44 (8):783-794. 2003.
Hsu HF, Yang CH. An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol 43 (10):1198-1209. 2002.
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17 (8):754-755. 2001.
Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294 (5550):2310-2314. 2001.
Immink RG, Tonaco IA, de Folter S, Shchennikova A, van Dijk AD, Busscher-Lange J, Borst JW, Angenent GC. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation. Genome Biol 10 (2):R24. 2009.
Ireland HS, Yao JL, Tomes S, Sutherland PW, Nieuwenhuizen N, Gunaseelan K, Winz RA, David KM, Schaffer RJ. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. Plant J 73 (6):1044-1056. 2013.
Irish VF, Litt A. Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev 15 (4):454-460. 2005.
Ito T. Coordination of flower development by homeotic master regulators. Curr Opin Plant Biol 14 (1):53-59. 2010.
Ito T, Ng KH, Lim TS, Yu H, Meyerowitz EM. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19 (11):3516-3529. 2007.
Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J 55 (2):212-223. 2008.
Johansen B, Frederiksen S Orchid flowers: evolution and molecular development. In: Cronk QCB, Bateman RM, Hawkins JA eds. Developmental Genetics and Plant Evolution: CRC Press, 206-219. 2002.
Kaiser R The scent of orchids : olfactory and chemical investigations: Elsevier. 1993.
Kanno A, Saeki H, Kameya T, Saedler H, Theissen G. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52 (4):831-841. 2003.
Kaufmann K, Muino JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7 (4):e1000090. 2009.
Kaufmann K, Muino JM, Osteras M, Farinelli L, Krajewski P, Angenent GC. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat Protoc 5 (3):457-472. 2010.
Kay QON, Daoud HS, Stirton CH. Pigment Distribution, Light-Reflection and Cell Structure in Petals. Botanical Journal of the Linnean Society 83 (1):57-83. 1981.
Kima S-Y, Yunb P-Y, Fukudaa T, Ochiaic T, Yokoyamad J, Kameyaa T, Kanno A. Expression of a DEFICIENS-like gene correlates with the differentiation between sepal and petal in the orchid, Habenaria radiata (Orchidaceae). Plant Sci 172 (2):319-326. 2007.
Koch K, Bhushanb B, Barthlott W. Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4 (10):1943-1963. 2008.
Kocyan A, Endress PK. Floral structure and development of Apostasia and Neuwiedia (Apostasioideae) and their relationships to other Orchidaceae. International Journal of Plant Sciences 162 (4):847-867. 2001.
Kramer EM, Dorit RL, Irish VF. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149 (2):765-783. 1998.
Kramer EM, Hall JC. Evolutionary dynamics of genes controlling floral development. Curr Opin Plant Biol 8 (1):13-18. 2005.
Kramer EM, Jaramillo MA. Genetic basis for innovations in floral organ identity. J Exp Zoolog B Mol Dev Evol 304 (6):526-535. 2005.
Kramer EM, Jaramillo MA, Di Stilio VS. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166 (2):1011-1023. 2004.
Krizek BA, Anderson JT. Control of flower size. J Exp Bot 64 (6):1427-1437. 2013.
Kumar MN, Jane WN, Verslues PE. Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. Plant Physiol 161 (2):942-953. 2013.
Li X, Luo J, Yan T, Xiang L, Jin F, Qin D, Sun C, Xie M. Deep sequencing-based analysis of the Cymbidium ensifolium floral transcriptome. PLoS One 8 (12):e85480. 2013.
Lid SE, Meeley RB, Min Z, Nichols S, Olsen OA. Knock-out mutants of two members of the AGL2 subfamily of MADS-box genes expressed during maize kernel development. Plant Science 167 (3):575-582. 2004.
Litt A, Irish VF. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165 (2):821-833. 2003.
Litt A, Kramer EM. The ABC model and the diversification of floral organ identity. Semin Cell Dev Biol 21 (1):129-137. 2010.
Lu HC, Chen HH, Tsai WC, Chen WH, Su HJ, Chang DC, Yeh HH. Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol 143 (2):558-569. 2007.
Lu HC, Hsieh MH, Chen CE, Chen HH, Wang HI, Yeh HH. A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid. Mol Plant Microbe Interact 25 (6):738-746. 2012.
Lu ZX, Wu M, Loh CS, Yeong CY, Goh CJ. Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid. Plant Mol Biol 23 (4):901-904. 1993.
Malcomber ST, Kellogg EA. SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10 (9):427-435. 2005.
Manchado-Rojo M, Delgado-Benarroch L, Roca MJ, Weiss J, Egea-Cortines M. Quantitative levels of Deficiens and Globosa during late petal development show a complex transcriptional network topology of B function. Plant J 72 (2):294-307. 2012.
Mara CD, Huang T, Irish VF. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell 22 (3):690-702. 2010.
Mara CD, Irish VF. Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis. Plant Physiol 147 (2):707-718. 2008.
Matsubara K, Shimamura K, Kodama H, Kokubun H, Watanabe H, Basualdo IL, Ando T. Green corolla segments in a wild Petunia species caused by a mutation in FBP2, a SEPALLATA-like MADS box gene. Planta 228 (3):401-409. 2008.
Matsui S, Nakamura M. Distribution of flower pigments in perianth of Cattleya and allied genera 1. species. Journal of the Japanese Society for Horticultural Science 57 (2):222-232. 1988.
Mondragon-Palomino M. Perspectives on MADS-box expression during orchid flower evolution and development. Front Plant Sci 4:377. 2013.
Mondragon-Palomino M, Theissen G. MADS about the evolution of orchid flowers. Trends Plant Sci 13 (2):51-59. 2008.
Mondragon-Palomino M, Theissen G. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann Bot 104 (3):583-594. 2009.
Mondragon-Palomino M, Theissen G. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'. Plant J 66 (6):1008-1019. 2011.
Moore RC, Grant SR, Purugganan MD. Molecular population genetics of redundant floral-regulatory genes in Arabidopsis thaliana. Mol Biol Evol 22 (1):91-103. 2005.
Moore RC, Purugganan MD. The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8 (2):122-128. 2005.
Mudalige RG, Kuehnle AR, Amore TD. Pigment distribution and epidermal cell shape in Dendrobium species and hybrids. Hortscience 38 (4):573-577. 2003.
Nakada M, Komatsu M, Ochiai T, Ohtsu K, Nakazono M, Nishizawa NK, Nitta K, Nishiyama R, Kameya T, Kanno A. Isolation of MaDEF from Muscari armeniacum and analysis of its expression using laser microdissection. Plant Sci 170 (1):143-150. 2006.
Nakamura T, Fukuda T, Nakano M, Hasebe M, Kameya T, Kanno A. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Mol Biol 58 (3):435-445. 2005.
Ng M, Yanofsky MF. Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2 (3):186-195. 2001.
Noda K, Glover BJ, Linstead P, Martin C. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369 (6482):661-664. 1994.
Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M. MIXTA-Like Transcription Factors and WAX INDUCER1/SHINE1 Coordinately Regulate Cuticle Development in Arabidopsis and Torenia fournieri. Plant Cell 25 (5):1609-1624. 2013.
Pan ZJ, Chen YY, Du JS, Chen YY, Chung MC, Tsai WC, Wang CN, Chen HH. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytol 202 (3):1024-1042. 2014.
Pan ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, Hu JM, Chen HH. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant Cell Physiol 52 (9):1515-1531. 2011.
Park JH, Ishikawa Y, Ochiai T, Kanno A, Kameya T. Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol 45 (3):325-532. 2004.
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405 (6783):200-203. 2000.
Perez-Rodriguez M, Jaffe FW, Butelli E, Glover BJ, Martin C. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 132 (2):359-370. 2005.
Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140 (1):345-356. 1995.
Ramirez SR, Gravendeel B, Singer RB, Marshall CR, Pierce NE. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448 (7157):1042-1045. 2007.
Rijpkema AS, Zethof J, Gerats T, Vandenbussche M. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J 60 (1):1-9. 2009.
Rudall PJ, Bateman RM. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol Rev Camb Philos Soc 77 (3):403-441. 2002.
Rudall PJ, Bateman RM. Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Plant Sci 8 (2):76-82. 2003.
Rudall PJ, Perl CD, Bateman RM. Organ homologies in orchid flowers re-interpreted using the Musk Orchid as a model. PeerJ 1:e26. 2013.
Ruokolainen S, Ng YP, Albert VA, Elomaa P, Teeri TH. Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins. BMC Plant Biol 10:129. 2010.
Sablowski R. Genes and functions controlled by floral organ identity genes. Semin Cell Dev Biol 21 (1):94-99. 2010.
Sablowski RW, Meyerowitz EM. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92 (1):93-103. 1998.
Sakai H, Krizek BA, Jacobsen SE, Meyerowitz EM. Regulation of SUP expression identifies multiple regulators involved in Arabidopsis floral meristem development. Plant Cell 12 (9):1607-1618. 2000.
Seymour GB, Ryder CD, Cevik V, Hammond JP, Popovich A, King GJ, Vrebalov J, Giovannoni JJ, Manning K. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue. J Exp Bot 62 (3):1179-1188. 2010.
Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB. Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 366 (2):266-274. 2006.
Skipper M, Pedersen KB, Johansen LB, Frederiksen S, Irish VF, Johansen BB. Identification and quantification of expression levels of three FRUITFULL-like MADS-box genes from the orchid Dendrobium thyrsiflorum (Reichb.f.). Plant Science 169:579-586. 2005.
Smaczniak C, Immink RG, Muino JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A 109 (5):1560-1565. 2012.
Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS. The ABC model and its applicability to basal angiosperms. Ann Bot 100 (2):155-163. 2007a.
Soltis DE, Ma H, Frohlich MW, Soltis PS, Albert VA, Oppenheimer DG, Altman NS, dePamphilis C, Leebens-Mack J. The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci 12 (8):358-367. 2007b.
Song IJ, Nakamura T, Fukuda T, Yokoyama J, Ito T, Ichikawa H, Horikawa Y, Kameya T, Kanno A. Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev Genes Evol 216 (6):301-313. 2006.
Stellari GM, Jaramillo MA, Kramer EM. Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol Biol Evol 21 (3):506-519. 2004.
Su CL, Chen WC, Lee AY, Chen CY, Chang YC, Chao YT, Shih MC. A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLoS One 8 (11):e80462. 2013.
Suetsugu K. Autonomous self-pollination in the nectarless orchid Pogonia minor. Plant Species Biology:in press. 2014.
Sundstrom JF, Nakayama N, Glimelius K, Irish VF. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Plant J 46 (4):593-600. 2006.
Swofford DL PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts, USA: Sinauer Associates. 2002.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 (10):2731-2739. 2011.
Tan J, Wang HL, Yeh KW. Analysis of organ-specific, expressed genes in Oncidium orchid by subtractive expressed sequence tags library. Biotechnol Lett 27 (19):1517-1528. 2005.
Teixeira SD, Borba EL, Semir J. Lip anatomy and its implications for the pollination mechanisms of Bulbophyllum species (Orchidaceae). Annals of Botany 93 (5):499-505. 2004.
Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4 (1):75-85. 2001.
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H. A short history of MADS-box genes in plants. Plant Mol Biol 42 (1):115-149. 2000.
Theissen G, Melzer R. Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot 100 (3):603-619. 2007.
Theissen G, Saedler H. Floral quartets. Nature 409 (6819):469-471. 2001.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876-4882. 1997.
Tsai WC, Chen HH. The orchid MADS-box genes controlling floral morphogenesis. ScientificWorldJournal 6:1933-1944. 2006.
Tsai WC, Fu CH, Hsiao YY, Huang YM, Chen LJ, Wang M, Liu ZJ, Chen HH. OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiol 54 (2):e7. 2013.
Tsai WC, Hsiao YY, Lee SH, Tung CW, Wang DP, Wang HC, Chen WH, Chen HH. Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Science 107:426-432. 2006.
Tsai WC, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Chen WH, Chen HH. Molecular biology of orchid flowers: With emphasis on Phalaenopsis. Botanical Research: Incorporating Advances in Plant Pathology, Vol. 47 47:99-145. 2008a.
Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45 (7):831-844. 2004.
Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46 (7):1125-1139. 2005.
Tsai WC, Pan ZJ, Hsiao YY, Jeng MF, Wu TF, Chen WH, Chen HH. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol 49 (5):814-824. 2008b.
Tzeng TY, Yang CH. A MADS box gene from lily (Lilium Longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol 42 (10):1156-1168. 2001.
Uimari A, Kotilainen M, Elomaa P, Yu D, Albert VA, Teeri TH. Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc Natl Acad Sci U S A 101 (44):15817-15822. 2004.
Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB, Pezzotti M, Ferrario S, Angenent GC, Gerats T. Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15 (11):2680-2693. 2003.
Vignolini S, Davey MP, Bateman RM, Rudall PJ, Moyroud E, Tratt J, Malmgren S, Steiner U, Glover BJ. The mirror crack'd: both pigment and structure contribute to the glossy blue appearance of the mirror orchid, Ophrys speculum. New Phytol 196 (4):1038-1047. 2012.
Wang SY, Lee PF, Lee YI, Hsiao YY, Chen YY, Pan ZJ, Liu ZJ, Tsai WC. Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae). Plant Cell Physiol 52 (3):563-577. 2011.
Wernersson R, Pedersen AG. RevTrans - Constructing alignments of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31 (13):3537-3539. 2003.
Whipple CJ, Zanis MJ, Kellogg EA, Schmidt RJ. Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals. Proc Natl Acad Sci U S A 104 (3):1081-1086. 2007.
Whitney HM, Bennett KM, Dorling M, Sandbach L, Prince D, Chittka L, Glover BJ. Why do so many petals have conical epidermal cells? Ann Bot 108 (4):609-616. 2011.
Wuest SE, O'Maoileidigh DS, Rae L, Kwasniewska K, Raganelli A, Hanczaryk K, Lohan AJ, Loftus B, Graciet E, Wellmer F. Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci U S A 109 (33):13452-13457. 2012.
Xu Y, Teo LL, Zhou J, Kumar PP, Yu H. Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46 (1):54-68. 2006.
Yadav SR, Khanday I, Majhi BB, Veluthambi K, Vijayraghavan U. Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility. Plant Cell Physiol 52 (12):2123-2135. 2011.
Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555-556. 1997.
Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15 (12):496-503. 2000.
Yoshida H. Is the lodicule a petal: molecular evidence? Plant Sci 184:121-128. 2012.
Yoshida S, Forno DA, Cock J, International Rice Research I Laboratory manual for physiological studies of rice. International Rice Research Institute, 43-45. 1971.
Yu H, Goh CJ. Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123 (4):1325-1336. 2000.
Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, Depamphilis CW, Ma H. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169 (4):2209-2223. 2005a.
Zahn LM, Leebens-Mack J, DePamphilis CW, Ma H, Theissen G. To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J Hered 96 (3):225-240. 2005b.
Zik M, Irish VF. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell 15 (1):207-222. 2003.
Zwickl DJ. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. The University of Texas, Austin