簡易檢索 / 詳目顯示

研究生: 閔裕麟
Min, Yu-Lin
論文名稱: 具可調頻率與可變相位控制之行波式超音波馬達驅動器之研究
Study of a Traveling-Wave Type Ultrasonic Motor Driver with Frequency Regulation and Variable-Phase Control
指導教授: 陳添智
Chen, Tien-chi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 77
中文關鍵詞: 超音波馬達
外文關鍵詞: ultrasonic motor
相關次數: 點閱:51下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新型超音波馬達和一般電磁馬達相較有顯著的優點,如體積小、低噪音運行、可忽略磁場干擾、低轉速時高轉矩、高保持轉矩、結構簡單,加工容易…等等。因此在一些需要安靜的場合,如辦公室、醫院,或是容易受到電磁干擾的地方,如核磁共振設備,以及精密定位設備、照相機自動對焦系統、機械手臂,甚至是汽車工業、航太工業…等等,使用超音波馬達有越來越普遍的趨勢,而且超音波馬達的設計相當多樣化,因此超音波馬達在未來有著相當廣泛的應用前景。
    超音波馬達的特性複雜且高度非線性,其馬達參數易受溫度上升、驅動頻率、驅動電壓及兩相電壓之相位差等變數所影響。在傳統超音波馬達驅動器設計,通常只能控制兩相電壓之切換頻率大小,但相位差固定在90度,且輸出電壓振幅容易受到品質因數的影響,造成兩相電壓的不平衡,因此不能有效獲得良好的控制基礎。故本論文提出一種新穎超音波馬達驅動電路設計,能夠產生可調整頻率與可變相位差之兩相相同振幅之弦波電壓,進而對超音波馬達進行精確且快速的速度響應控制。另外此超音波馬達驅動電路,設計結構簡單、成本低廉、易於實現與高實用性。
    最後,藉著數位訊號處理器高精確度、不易受溫度變化與雜訊干擾之特性,以實現全數位元化之超音波馬達控制系統。由實驗結果可以看出本論文所提出的驅動器,可獲得良好的控制性能及精確的速度響應,並且驗證了本新穎驅動器在超音波馬達應用上,有著相當良好的效能與高實用性。

    The newly traveling-wave ultrasonic motor (TWUSM) compared with conventional electromagnetic motors has many excellent performances, such as compactness in size, high torque at low speed, high holding torque, no electromagnetic interferences and so on. Therefore, the TWUSM has been used in many practical areas such as industrial, medical, robotic, and automotive applications.
    The control characteristic of the TWUSM is complicated and highly nonlinear. Moreover, the motor parameters are time-varying owing to increases in temperature and changes in motor drive operating conditions, such as driving frequency, voltage amplitude and phase difference of two-phase voltages. The conventional driving circuits are regulated the frequency of the sinusoidal voltage waveforms, but the phase difference of the two-phase voltages is fixed at 90 degrees. In addition, the output voltage gain is seriously varied for the variation of the quality factor. Thus, the two-phase sinusoid output voltages will be unbalanced that affects the performance of the ultrasonic motors with the conventional driving circuits. For the reason, this thesis presents a novel driver system for the TWUSM, which incorporates frequency control, phase-difference modulation, and provides two-phase balanced voltage to improve the drawback of conventional driving circuit. The goals for novel driving circuit design are to satisfy these requirements, as well as high power efficiency and reduce the system hardware size and cost. With the novel driving circuit of TWUSM, the system will have quick and precise speed response.
    From the detailed experimental results of this study are showed a superior performance for the TWUSM. Furthermore, the results are provided to demonstrate the effectiveness of the proposed driving circuit.

    摘要 I Abstract II Acknowledgements III Contents IV List of Tables VI List of Figures VII Symbols XIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Outline of this Thesis 4 Chapter 2 Traveling-Wave Ultrasonic Motor 6 2.1 Theoretical Background of TWUSM 6 2.2 Basic TWUSM Structure 7 2.3 Operating Principle and Characteristic 7 2.4 Equivalent Model of TWUSM 11 2.5 Features of Traveling-Wave Ultrasonic Motor 14 Chapter 3 Drive Circuit Design 16 3.1 Design Goals 16 3.2 Voltage-Controlled Oscillator Circuit 17 3.3 Voltage-Controlled Phase Shifter Circuit 19 3.4 Voltage-Controlled Impedances 26 3.5 Gain Amplifier Circuit 30 3.6 Power Amplifiers Circuit and Transformer 30 Chapter 4 Experimental Results 33 4.1 Control Structure of Experimental System 33 4.2 TMS320F2812 DSP Experiment Board 36 4.3 Driving Frequency and Phase Difference Effect 38 4.4 Speed Control of the TWUSM 46 4.4.1 The Speed Control of TWUSM: Frequency Regulation Control 48 4.4.2 The Speed Control of TWUSM: Variable-Phase Control of Two-Phase Voltages 53 4.4.3 The Speed Control of TWUSM: Frequency Regulation and Variable-Phase Control of Two-Phase Voltages 62 Chapter 5 Conclusions 69 5.1 Conclusions 69 5.2 Suggestion for Further Possible Research 69 References 71 Appendices 74 Vita 77

    [1] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, 1997.
    [2] K. Uchino, “Piezoelectric Ultrasonic Motors: Overview,” Smart Materials and Structures, Vol. 7, pp. 273-285, 1998.
    [3] T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors, Oxford University Press, New York, 1993.
    [4] A. Ferreira and P. Minotti, “High-Performance Load-Adaptive Speed Control for Ultrasonic Motors,” Control Engineering Practice, Vol. 6, pp. 1-13, 1998.
    [5] T. Senjyu, T. Kashiwagi, and K. Uezato, “A Study on High Efficiency Drive of Ultrasonic Motors,” Electric Power Components and Systems, Vol. 29, pp. 179-189, 2001.
    [6] N. El Ghouti, Hybrid Modeling of a Traveling Wave Piezoelectric Motor, PhD Thesis, Dep. of Control Engineering, Aalborg University, Denmark, 2000.
    [7] T. S. Glrnn, Mixed-Domain Performance Model of the Piezoelectric Traveling-Wave Motor and the Development of a Two-Sided Device, PhD, Massachusetts Institute of Technology, 2002.
    [8] F. J. Lin, R. J. Wai, and M. P. Chen, “Wavelet Neural Network Control for Linear Ultrasonic Motor Drive via Adaptive Sliding-Mode Technique,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 50, No. 6, pp. 686-698, June 2003.
    [9] G. Bal and E. Bekiro˘glu, “Servo Speed Control of Travelling-Wave Ultrasonic Motor Using Digital Signal Processor,” Sensors and Actuators A, Vol. 109, pp. 212-219, January 2004.
    [10] K. T. Chau and S.W. Chung, “Servo Position Control of Ultrasonic Motors Using Fuzzy Neural Network,” Electric Components and Systems, Vol. 29, pp. 229-246, 2001.
    [11] T. Senjyu, T. Kashiwagi, and K. Uezato, “Position Control of Ultrasonic Motors Using MRAC and Dead-Zone Compensation with Fuzzy Inference,” IEEE Trans. on Power Electronics, Vol. 17, No. 2, pp. 265-272, March 2002.
    [12] R. L. Steigerwald, “A Comparison of Half-Bridge Resonant Converter Topologies,” IEEE Trans. on Power Electronics, Vol. 3, No. 2, pp. 174-182, April 1988.
    [13] F. J. Lin, R. J. Wai, and C. M. Hong, “Recurrent Neural Network Control for LCC-Resonant Ultrasonic Motor Drive,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, No.3, pp. 737-749, May 2000.
    [14] F. J. Lin and L. C. Kuo, “Driving Circuit for Ultrasonic Motor Servo Drive with Variable-Structure Adaptive Model-Following Control,” IEE Proc.-Electr. Power Appl., Vol. 144, No.3, pp. 199-206, May 1997.
    [15] K. T. Chau, S. W. Chung, and C. C. Chan, “Neuro-Fuzzy Speed Tracking Control of Traveling-Wave Ultrasonic Motor Drives using Direct Pulse Width Modulation,” IEEE Trans. on Industry Applications, Vol. 39, No. 4, pp. 1061-1069, 2003.
    [16] K. Nishibori, S. Kondo, H. Obata, and S. Okuma, “PWM Driving Characteristics of Robot Hand with Fingers Using Vibration-Type Ultrasonic Motors,” in Proc. IEEE IECON’97, pp. 1355-1360, 1997.
    [17] K. T. Chau and S. W. Chung, “Neuro-Fuzzy Speed Tracking Control of Traveling-Wave Ultrasonic Motor Drives Using Direct Pulse Width Modulation,” Conference Record of The 37th IAS Annual Meeting, Vol. 3, pp. 2043-2050, 2002.
    [18] H. V. Barth, “Ultrasonic Driven Motor,” IBM Technological Disclosure Bulletin 16, No. 7, p. 2263, December 1973.
    [19] N. W. Hagood and A. J. McFarland, “Modeling of a Piezoelectric Rotary Ultrasonic Motor,” IEEE Trans. on Ultrason., Ferroelect. Freq. Contr., Vol. 42, No. 2, pp. 210-224, March 1995.
    [20] Data Sheet of ICL8038, Intersil User Manual, 1998.
    [21] K. Nay and A. Budak, “A Voltage-Controlled Resistance with Wide Dynamic Range and Low Distortion,” IEEE Trans. on Circuits and Systems, Vol. CAS-30, No. 10, pp. 770-772, October 1983.
    [22] A. S. Sedra and K. C. Smith, Microelectronic Circuit. New York: Holt, Rinehart, and Winston, p. 257, 1982.
    [23] R. Senani and D. R. Bhaskar, “A Simple Configuration for Realizing Voltage-Controlled Impedances,” IEEE Trans. on Circuits and Systems, Vol. 39, No. 1, pp. 52-59, January 1992.
    [24] K. Ogata, Modern Control Engineering, Prentice-Hall Fourth Edition, 2002.

    下載圖示 校內:2009-07-13公開
    校外:2009-07-13公開
    QR CODE