簡易檢索 / 詳目顯示

研究生: 莊君毅
Jhuang, Jyun-Yi,
論文名稱: 1氫-吡唑在銅(100)和氧/銅(100)表面上的熱反應研究
Thermal Chemistry of 1H-Pyrazole on Cu(100) and O/Cu(100) Surfaces
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: 程式控溫反應/脫附X光光電子能譜吸收紅外光譜銅(100)1氫-吡唑
外文關鍵詞: 1H-pyrazole, temperature-programmed desorption (TPR/D), X-ray photoelectron spectroscopy (XPS), reflection-absorption infrared spectroscopy, Cu(100)
相關次數: 點閱:166下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是以程式控溫反應/脫附(Temperature-Programmed Reaction/Desorption,TPR/D)、反射式吸收紅外光譜(Reflection-Absorption Infrared Spectroscopy,RAIRS)和X光光電子能譜(X-ray Photoelectron Spectroscopy,XPS)探討超高真空系統中1氫-吡唑在Cu(100)及O/Cu(100)表面上的反應。1氫-吡唑在無氧Cu(100)表面下,TPR/D實驗中顯示C3H4N2的多層分子性脫附溫度在210 K。得到的產物主要有H2、CH3CN、HCN、N2,脫附範圍在520 K-800 K。RAIRS實驗我們推測250 K時,母分子已經分解,已無法偵測到母分子吸附峰訊號。此外,並沒有測到C≡N的吸收訊號。由XPS的資訊我們得知C3H4N2分子中的N-H鍵在120 K時已經有少部份斷鍵,當溫度升溫至250 K則N-H鍵大部分都已斷鍵,直到520 K五元環破裂並產生許多高溫產物脫附。有氧表面的TPR/D實驗除了生成與無氧條件下相同的產物之外,也偵測到H2O、CO、CO2的產生,其脫附範圍則在430 K-800 K。RAIRS實驗在溫度480 K下有偵測到C≡N亦或是C=C=N的吸收訊號,位置在2171 cm-1。XPS得知溫度達480 K後有部分的C-N斷裂,980 K時C-N鍵訊號消失,只能在表面偵測到殘碳的訊號。

    Thermal chemistry of 1H-pyrazole(C3N2H4) on Cu(100) single crystal, and oxygen-precovered Cu(100) surfaces (O/Cu(100)) has been studied with temperature-programmed reaction/desorption (TPR/D) and reflection-absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS). When 1H-pyrazole molecules are adsorbed on Cu(100) at 120 K, most of them remain intact. As the surface temperature increases, the multilayers of 1H-pyrazole desorbed at ~210 K. Meanwhile, 1H-pyrazole on Cu(100) can undergo N-H bond scission and result in an aromatic intermediate (C3N2H3), which is evidenced by our RAIRS and XPS experimental results. Upon heating to ~520 K, the five-membered-ring of the intermediate begins to decompose to form CH3CN, HCN and N2, with residual C atoms left on the surface. The presence of preadsorbed oxygen leads to the decrease of the energy barrier regarding to decomposition of the five-membered-ring. On O/Cu(100), the products and surface intermediates detected from C3H4N2 dissociation are similar to those of clean surface. However, a broad desorption peak of H2O is observed at 467 K on O/Cu(100). Besides, we detected an infrared peak at 2171 cm-1 , being assigned as the stretching mode of C≡N or C=C=N.

    第一章 緒論 1.1 表面定義與Cu(100)表面....................................................................................1 1.2 表面化學的發展..................................................................................................2 1.3 真空的定義與應用..............................................................................................3 1.4 表面吸附..............................................................................................................4 1.5 研究動機..............................................................................................................5 第二章 表面研究之分析技術 2.1 程式控溫反應/脫附..........................................................................................12 2.2 反射式紅外光吸收光譜....................................................................................14 2.3 X光光電子能譜.................................................................................................18 第三章 實驗系統與方法 3.1 超高真空系統....................................................................................................21 3.2 單晶之前處理方法............................................................................................23 3.3 有氧表面之製備方法........................................................................................23 3.4 樣品之前處理方法............................................................................................24 第四章 結果與討論 4.1 C3H4N2在Cu(100)表面上的程溫反應脫附研究 4.1.1 C3H4N2在Cu(100)表面上的TPR/D研究…..................................................25 4.1.2 C3H4N2在O/Cu(100)表面上的TPR/D研究...................................................40 4.2 1H-pyrazole在Cu(100)表面上的反射式吸收紅外光譜(RAIRS)之研究 4.2.1 1H-pyrazole在Cu(100)表面上的反射式吸收紅外光譜(RAIRS)之研究…55 4.2.2 1H-pyrazole在O/Cu(100)表面上的反射式吸收紅外光譜(RAIRS)之研究.59 4.3 1H-pyrazole在Cu(100)表面上的X光光電子能譜(XPS)分析 4.3.1 1H-pyrazole Cu(100)表面上的XPS研究.......................................................62 4.3.2 1H-pyrazole在O/Cu(100)表面上的XPS研究..............................................74 第五章 結論........................................................................................................77 參考文獻...............................................................................................................78

    [1] M. N’dollo1, P. S. Moussounda1, T. Dintzer, F. Garin J. Mod. Phys.2013, 4,409.
    [2] G. A. Somorjai Introduction to Surface Chemistry and Catalysis, Wiley & Sons, New York, 1994.
    [3] S. J. Gregg; K. S. Sing Adsorption, Surface Area and Porosity, Academic Press, New York, 1967.
    [4] F. P. Netzer, E. Bertel, and J. A. D. Matthew, Surf. Sci. 1980, 92, 43.
    [5] J. A. Horsley, J. Stöhr, A. P. Hitchcock, D. C. Newbury, A. L. Johnson, and F. Sette, J. Chem. Phys. 1985, 83, 6099.
    [6] D. F. Ogletree, M. A. Van Hove and G. A. Somorjai, Surf. Sci. 1983, 183, 1 .
    [7] P. S. Weiss and D. M. Eigler, Phys. Rev. Lett. 1993, 71, 3139.
    [8] K. M. Bratlie; C. J. Kliewer; G. A. Somorjai, J. Phys. Chem. B
    2006, 110, 17925.
    [9] A. Goswami, S. Koskey, T. Mukherjee and O. Chyan, ECS J. Solid State Sci. Technol. 2014, 3, 293.
    [10] M. Ebadi, W. J. Basirun, H. Khaledi and H. M. Ali, Chem. Cent. J. 2012, 6, 163.
    [11] G. K. Gomma, Mater. Chem. Phys. 1998, 55, 241.
    [12] E. Geler, D. S. Azambuja, Corros. Sci. 2000, 42, 631.
    [13] N. Su, F. Meng, J. Chen, Y. Wang, H. Tan, S. Su, W. Zhu, Dyes Pigments 2016, 128, 68.
    [14] Q. Zheng, F. Yang, M. Deng, Y. Ling, X. Liu, Z. Chen, Y. Wang, L. Weng, and Y. Zhou, Inorg. Chem. 2013, 52, 10368.
    [15] F. Gao, Y. Wang, L. Burkholder, W. T. Tysoe, Surf. Sci. 2007, 601, 3579.
    [16] F. Gao, Z. Li, Y. Wang, L. Burkholder, W. T. Tysoe, J. Phys. Chem.C 2007, 111, 9981.
    [17] L. A. Welch, PhD dissertations, Lehigh University, 2012.
    [18] A. F. Lee, Z. Chang, S. F. J. Hackett, A. D. Newman, and K. Wilson, J. Phys. Chem. C 2007, 111, 10455.
    [19] M. Xi, M. X. Yang, S. K. Jo, B. E. Bent, J. Chem. Phys. 1994, 101, 15.
    [20] 李思慧碩士論文, 國立成功大學化學所, 2014.
    [21] P. A. Redhead Vacuum, 1962, 12, 203.
    [22] J. A. W. Elliott, C. A. Ward, J. Chem. Phys. 1997, 106, 5677.
    [23] J. C. Vickerman Surface Analysis-The Principle Techniques, Wiley & Sons, New York, 1997.
    [24] T. Buthelezi, L. Dingrando, N. Hainen, C. Wistrom, D. Zike Chemistry matter and change Glencoe/McGraw-Hill, New York, 2008.
    [25] C. Y. Chen; P. T. Chang; K. H. Kuo; J. J. Shih; J. L. Lin J. Phys. Chem. B 2003, 107, 10488.
    [26] B. A. Sexton Surf. Sci. 1979, 88, 299.
    [27] I. Chorkendorff; P. B. Rasmussen Surf. Sci. 1991, 248, 35.
    [28] B. A. Sexton; A. E. Hughes Surf. Sci. 1984, 140, 227.
    [29] R. Brosseau, M. R. Brustein, T. H. Ellis Surf. Sci. 1993, 294, 243.
    [30] T. Sueyoshi, T. Sasaki, Y. Iwasawa J. Phys. Chem. B 1997, 101, 4648.
    [31] T. H. Ellis; E. J. Kruus; H. Wang J. Vac. Sci. Technol. A 1993, 11, 2117.
    [32] D. Kolovos-Vellianitis; T. Kammler; J. Küppers Surf. Sci. 2001, 166, 482.
    [33] P. B. Rasmueen, P. A. Taylor, I. Chorkendorff Surf. Sci. 1992, 270, 352.
    [34] V. Krishnakumara, N. Jayamanib, R. Mathammalc Spectrochim. Acta A 2011, 79, 1959.
    [35] J. -L. Lin, C. -W. Kuo, C. -M. Yang, Y. -S. Lin, T. -S. Wu, and P. -Y. Chao J. Phys. Chem.C 2013, 117, 19916.
    [36] R. G. Jones and W. J. Orville-Thomas J. Chem. Soc. 1965, 4632.
    [37] A. F. Carley, P. R. Davies, D. Edwards, R. V. Jones, and M. Parsons Top. Catal. 2005, 36, 21.
    [38] K. Babic-Samardzija, C. Lupu, N. Hackerman, A. R. Barron, A. Luttge Langmuir 2005, 21, 12187.
    [39] X. Liu, H. -N. Zheng, Y. -Z. Ma, Q. Yan, S. -J. Xiao J. Colloid Interface Sci. 2011, 358, 116.
    [40] F. Bebensee, C. Bombis, S. -R. Vadapoo, J. R. Cramer, F. Besenbacher, K. V. Gothelf, and T. R. Linderoth J. Am. Chem. Soc. 2013, 135, 2136.

    下載圖示 校內:2021-07-20公開
    校外:2021-07-20公開
    QR CODE