| 研究生: |
唐琳雅 Tang, Lin-Ya |
|---|---|
| 論文名稱: |
校園空調型教室熱舒適調查及戶外熱環境模擬 Thermal comfort investigations in air-conditioned classrooms and thermal environment simulation in outdoor areas in campus |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 熱舒適 、空調型學校 、CFD模擬 |
| 外文關鍵詞: | Thermal Comfort, School building, Occupant satisfaction, Post-occupancy evaluation, CFD simulation |
| 相關次數: | 點閱:151 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去校園的熱舒適往往關注於教室室內環境,戶外熱舒適較不受到重視。隨著戶外高溫化的問題,人們對於舒適度的期待漸漸從室內延伸到戶外,並直接影響師生參加戶外活動之意願。
因此,本研究以位於氣候炎熱的高雄美國學校為對象,探討師生在這樣的環境下對於室內與戶外的熱感知與熱舒適情形,以及在不同的校舍配置下,對戶外舒適的改變。
本研究由從高雄美國學校的教室室內長期溫濕度監測與戶外的定期觀測、收集數據資料,分析整理成週期性數據,並透過POE問卷以及戶外認知地圖,針對使用者回應找出校園需要改善的角落,掌握環境變化與使用者感受的關係。最後藉由CFD模擬軟體FlowDesigner,預期變更校舍配置對改善熱環境之效果。
研究結果發現,無論開啟空調時的室內溫度符合ASHRAE-55 2010的舒適範圍,使用者對環境的舒適度皆能維持在一定的滿意度(TCV≥0),且教師的國籍與在台居住時間直接影響著教室的空調溫度與開啟時數。此外,根據熱季認知地圖結果顯示,B棟校舍中央木地板區為最熱且陽光最大之地點;涼季則為校門口接送區為最熱,於是進行校舍配置變更模擬,發現打通中央棟一樓,不僅有助於校園戶外風之流動,更能有效改善使用者戶外活動舒適度。
此外,在校舍頂樓的玻璃屋由於長期受到日照直射,造成內部悶熱高溫且空氣不流通,於是進行開推窗之氣流模擬,並與建築師進行討論後,進行施工作業,針對推窗安裝前後之實測溫度分析結果發現,當季節風為西風時,與模擬結果預期相同的是能將玻璃屋內與屋外的溫度差從原本的10度降低到5度內,推窗入風與出風口之風速最高甚至能達到2.5m/s。本研究從推窗配置設計階段參與CFD模擬到最後如實進行施工,且達到預期效果,希望提供一個實例參考給對於未來設計階段能多利用CFD電腦模擬軟體進行建築物裡環境之考量。
Green building assessment, no longer limited to the structure, energy and other issues, the occupants’ thermal comfort and after-use evaluation, but also in recent years the government and the industry attention issues. The survey is carried out in Kaohsiung American School which is a co-educational Pre K-12 school with air-conditioning system located in the south of Taiwan. Requirements for comfort are critical especially to students’ performance and welfare. Classrooms and laboratories are chosen for investigation of indoor thermal conditions. On the other hand, 8 places in campus are chosen for outdoor area. Air temperature (Ta) and relative humidity (RH) are monitored using indoor sensors simultaneously throughout one year and outdoor measurement once a month. Data analysis compares the results with international standards, ASHRAE Standard 55, and CFD simulation (FlowDesigner). Results show that no matter how much points fall within summer comfort zone, students still feel comfortable. Concurrently, get through the first floor in the center of building to help the air flow between the two school buildings. Therefore, in the future, the air-condioting temperature can be higher for saving energy and CFD simulation can provides some useful suggestions for design.
1. ASHRAE Standard 55 (2010). “Thermal Environmental Conditions for Human Occupancy”. ASHRAE. Atlanta USA.
2. Chen C.P., Hwang R.L., Shih W.M.. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage. International Journal of Biometeorology (2014) 1941-1950
3. Corgnati S.P., Ansaldi P., Filippi M.. Thermal comfort in Italian classrooms under free running conditions during mid seasons: Assessment through objective and subjective approaches. Building and Environment 44 (2009) 785–792
4. Dascalaki E.G., Sermpetzoglou V.G.. Energy performance and indoor environmental quality in Hellenic schools. Energy and Buildings 43 (2011) 718-727
5. Huang K.T., Huang W.P., Lin T.P., Hwang R.L.. Implementation of green building specification credits for better thermal conditions in naturally ventilated school buildings. Building and Environment 86 (2015) 141-150
6. Issa M.H., Rankin J.H., Attalla M., Christian A.J.. Absenteeism. Performance and Occupant Satisfaction with the Indoor Environment of Green Toronto Schools. Indoor Built Environ (2011) 511–523
7. Katafygiotou M.C., Serghides D.K.. Thermal comfort of a typical secondary school building in Cyprus. Sustainable Cities and Society 13 (2014) 303-312
8. Lee Y.S., Guerin D.A.. Indoor Environmental Quality Related to Occupant Satisfaction and Performance in LEED-certified Buildings. Indoor Built Environ (2009) 293–300
9. LEED v4. Refernce guide for building design and construction. (2014) 595-755
10. Liang H.H., Chen C.P., Hwang R.L., Shih W.M., Lo S.C., Liao H.Y.. Satisfaction of occupants toward indoor environment quality of certified green office buildings in Taiwan. Building and Environment 72 (2014) 232-242
11. Nematchoua M.K., Tchinda R., Orosa J.A.. Adaptation and comparative study of thermal comfort in naturally ventilated classrooms and buildings in the wet tropical zones. Energy and Buildings 85 (2014) 321–328
12. Pereira L.D., Raimondo D., Corgnati S.P., da Silva M.G.. Assessment of indoor air quality and thermal comfort in Portuguese secondary classrooms: Methodology and results. Building and Environment 81 (2014) 69-80
13. Sehar F., Pipattanasomporn M., Rahman S.. A peak-load reduction computing tool sensitive to commercial building environmental preferences. Applied Energy 161 (2016) 279–289
14. Shih W.M., Chang S.Y., Hwang R.L., Chen C.P.. The thermal perception of students and adaptive use of environmental controls in a hybrid-ventilated classroom.
15. Thorsson S., Honjo T., Lindberg F., Eliasson I., Lim E.M.. Thermal Comfort and Outdoor Activity in Japanese Urban Public Places. Environment and Behavior 39 (2007) 660–684
16. Toparlar Y., Blocke B., Vos P., van Heijst G.J.F., Janssen W.D., van Hooff T., Montazeri H., Timmermans H.J.P.. CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam. Building and Environment 83 (2015) 79-90
17. Zhang G., Zheng C., Yang W., Zhang O., Moschandreas D.J.. Thermal Comfort Investigation of Naturally Ventilated Classrooms in a Subtropical Region. Indoor and Built Environment(2007)
中文文獻
1.何晨瑛,臺灣綠色小學校園生態環境現況解析之研究,國立成功大學碩士論文,2004
2.林品儀,都市綠帶其蒸散作用在都市微氣候中對熱環境影響之研究,國立台北科技大學碩士論文,2001
3.莊家梅,夏季戶外空間熱舒適之研究-以台南縣市、高雄市戶外空間為研究對象-,國立成功大學碩士論文,2008
4.風洞實驗館系統整合測試暨風洞性能驗證研究,內政部建築研究所,2004
5.許碧蕙,校園規劃「用後評估」之研究--以南投縣九二一震災重建國小為例,2002
6.簡君翰,無動力太陽能通風塔能源效益解析-以綠色魔法學校國際會議廳為例,國立成功大學碩士論文,2008