| 研究生: |
陳彥蓉 Chen, Yen-Jung |
|---|---|
| 論文名稱: |
嵌入式多層石墨烯薄板系統之圓柱型自然振動分析 Cylindrical Bending Vibration of Multiple Graphene Sheet Systems Embedded in an Elastic Medium |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 圓柱型撓曲 、石墨烯板 、多層奈米薄板系統 、多重時間尺度法 、振動 、Winkler 模型 |
| 外文關鍵詞: | cylindrical bending, graphene sheets, multiple nanoplate systems, the multiple time scale method, vibration, Winkler’s model |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文基於Eringen 非局部彈性力學理論與多重時間尺度法發展平面應變漸近非局部彈性力學理論,應用於具簡支承邊界之多層均向石墨烯薄板系統嵌入彈性介質中的圓柱型撓曲振動分析。頂層和底層石墨烯板與其周圍環境彈性介質及相鄰兩石墨烯板彼此間的相互作用均以不同勁度係數的單參數Wrinkler 形式之彈性支承模擬。演算過程利用非局部參數導入微小尺度效應於非局部本構方程式,並應用無因次化、漸近展開及連續積分之數學運算過程於獨立單層石墨烯板,再將各層石墨烯板之運動方程式組合成多層石墨烯板系統,形成一套遞迴循環的各階問題之運動方程式。非局部平面應變問題之首階近似解可解得非局部多層古典板理論之解,高階問題之運動方程式具有與非局部多層古典板理論相同之微分運算子,惟控制方程式之非齊性項不同。本文將以嵌入或非嵌入彈性介質的多層石墨烯板系統之自然頻率參數及其相應振動模態佐證漸近非局部彈性力學理論之精確與收斂快速。
An asymptotic nonlocal elasticity theory for cylindrical bending vibration analysis of simply-supported, Nl-layered, and uniformly- or nonuniformly-spaced, graphene sheet (GS) systems embedded in an elastic medium is developed by using the Eringen nonlocal elasticity theory and multiple time scale method. Both the interactions between the topmost and bottommost GSs and their surrounding medium and the interactions between each pair of adjacent GSs are modelled as one-parameter Winkler models with different stiffness coefficients. In the formulation, the small length scale effect is introduced to nonlocal constitutive equations using a nonlocal parameter, and then the nondimensionalization, asymptotic expansion, and successive integration mathematical processes are performed for a typical GS. After assembling the motion equations for each individual GS to form those of the multiple GS system, recurrent sets of motion equations can be obtained for various order problems. Nonlocal multiple classical plate theory (CPT) is derived as a first-order approximation of the current nonlocal plane strain problem, and the motion equations for higher-order problems retain the same differential operators as those of nonlocal multiple CPT, although with different nonhomogeneous terms. Some nonlocal plane strain solutions for the natural frequency parameters of the multiple GS system with and without being embedded in the elastic medium and their corresponding mode shapes are presented to demonstrate the performance of the asymptotic nonlocal elasticity theory.
Aksencer, T. and Aydogdu, M. (2011), Levy type solution method for vibration and buckling
of nanoplates using nonlocal elasticity theory, Physica E 43, 954-959.
Ansari, R. (2010), Sahmani, S. and Arash, B. , Nonlocal plate model for free vibrations of
single-layered graphene sheets, Phy. Lett. A 375, 53-62.
Arash, B. and Wang, Q. (2011), Vibration of single- and double-layered graphene sheets, J.
Nanotechnol. Eng. Medic. 2, 011012 (7 pages).
Arash, B. and Wang, Q. (2012), A review on the application of nonlocal elastic models in
modeling of carbon nanotubes and graphenes, Comput. Mater. Sci. 51, 303-313.
Chen, W.Q., Cai, J.B. and Ye, G.R. (2005), Responses of cross-ply laminates with viscous
interfaces in cylindrical bending, Comput. Methods Appl. Mech. Eng. 194, 823-835.
Chen, W.Q. and Lee, K.Y. (2004), On free vibration of cross-ply laminates in cylindrical
bending, J. Sound Vib. 273, 667-676.
Coleman, J.N., Khan, U., Blau, W.J. and Gun’ko, Y.K. (2006), Small but strong: a review of
the mechanical properties of carbon nanotube-polymer composites, Carbon 44, 1624-
1652.
Elishakoff, I., Versaci, C. and Muscolino, G. (2011), Clamped-free double-walled carbon
nanotube-based mass sensor, Acta Mech. 219, 29-43.
Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), A review on nonlocal elastic models
for bending, buckling, vibrations, and wave propagation of nanoscale beams, Appl.
Math. Modell. 40, 4109-4128.
Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Verlag, New York.
Eringen, A.C. and Edelen, D.G.B. (1972), On nonlocal elasticity, Int. J. Eng. Sci. 10, 233-
248.
Esashi, M. (2009), Micro/nano electro mechanical systems for practical applications, J. Phys.
187, 012001.
Esaw, A.M.K. and Farag, M.M. (2007), Carbon nanotube reinforced composites: potential
and current challenges, Mater. & Des. 28, 2394-2401.
Hosseini, S.A.H. and Rahmani, O. (2016), Surface effects on buckling of double nanobeam
system based on nonlocal Timoshenko Model, Int. J. Struct. Stab. Dyn. 16, 1550077
(17 pages).
Iijima, S. (1991), Helical microtubules of graphitic carbon, Nature 354, 56-58.
Karličić, D.,Kozić, P. and Pavlović, R. (2016), Nonlocal vibration and stability of a multiplenanobeam
system coupled by the Winkler elastic medium, Appl. Math. Modell. 40,
1599-1614.
Khaniki, H.B. (2018), On vibrations of nanobeam systems, Int. J. Eng. Sci. 124, 85-103.
Kippenberg, T.J. and Vahala, K.J. (2007), Cavity opto-mechanics, Opt. Express 15, 17172-
17205.
Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), Mechanical analysis of functionally graded
carbon nanotube reinforced composites: A review, Compos. Struct. 120, 90-97.
Liu, C., Ke, L.L., Wang, Y.S. and Yang, J. (2015), Nonlinear vibration of nonlocal
piezoelectric nanoplates, Int. J. Struct. Stab. Dyn. 15, 1540013 (20 pages).
Lu , C.F., Huang, Z.Y. and Chen, W.Q. (2007), Semi-analytical solutions for free vibration
of anisotropic laminated plates in cylindrical bending, J. Sound Vib. 304, 987-995.
Mateiu, R., Davis, Z.J., Madsen, D.N., Molhave, K., Boggild, P., Rassmusen, A.M., Brorson,
M., Jacobsen, J.H.C. and Boisen, A. (2004), An approach to a multi-walled carbon
nanotube based mass sensor, Microelectron. Eng. 73, 670-674.
Messina, A. (2001), Two generalized higher order theories in free vibration studies of
multilayered plates, J. Sound Vib. 242, 125-150.
Messina, A. and Soldatos, K.P. (2002), A general vibration model of angle-ply laminated
plates that accounts for the continuity of interlaminar stresses, Int. J. Solids Struct. 39,
617-635.
Metcalfe, M. (2014), Applications of cavity optomechanics, Appl. Phys. Rev. 1, 031105.
Murmu, T. and Adhikari, S. (2010), Nonlocal transverse vibration of double-nanobeamsystems,
J. Appl. Phys. 108, 083514 (9 pages).
Murmu, T. and Adhikari, S. (2011), Nonlocal vibration of bonded double-nanoplate-systems,
Compos. Part B 42, 1901-1911.
Murmu, T. and Adhikari, S. (2011), Axial instability of double-nanobeam-systems, Phys.
Lett. A 375, 601-608.
Murmu, T. and Adhikari, S. (2012), Nonlocal elasticity based vibration of initially prestressed
coupled nanobeam systems, Eur. J. Mech. A/Solids 34, 52-62.
Nayfeh, A.H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons, Inc.,
New York.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V.,
Grigorieva, I.V. and Firsov, A.A. (2004), Electric field effect in atomically thin carbon films,
Science 306, 666-669.
Pagano, N.J. (1969), Exact solutions for composite laminates in cylindrical bending, J.
Compos. Mater. 3, 398-411.
Pradhan, S.C. and Phadikar, J.K. (2009), Nonlocal elasticity theory for vibration of
nanoplates, J. Sound Vib. 325, 206-223.
Reddy, J.N. (2007), Nonlocal theories for bending, buckling and vibration of beams, Int. J.
Eng. Sci. 45, 288-307.
Rong, E., Fan, J., Lim, C.W., Xu, X. and Zhou, Z. (2018), A new analytical approach for free
vibration, buckling and forced vibration of rectangular nanoplates based on nonlocal
elasticity theory, Int. J. Struct. Stab. Dyn. 18, 1850055 (27 pages).
Shen, Z.B., Sheng, L.P., Li, X.F. and Tang, G.J. (2012), Nonlocal Timoshenko beam theory
for vibration of carbon nanotube-based biosensor, Physica E. 44, 1169-1175.
Sobhy, M. (2014), Thermomechanical bending and free vibration of single-layered graphene
sheets embedded in an elastic medium, Physica E 56, 400-409.
Vel, S.S. and Batra, R.C. (2000), Cylindrical bending of laminated plates with distributed
and segmented piezoelectric actuators/sensors, AIAA J. 38, 857-867.
Vel, S.S., Mewer, R.C. and Batra, R.C. (2004), Analytical solution for the cylindrical bending
vibration of piezoelectric composite plates, Int. J. Solids Struct. 41, 1625-1643.
Wang, K.F., Wang, B.L. and Kitamura, T. (2016), A review on the application of modified
continuum models in modeling and simulation of nanostructures, Acta Mech. Sinica 32,
83-100.
Wu, C.P. and Li, W.C. (2017), Free vibration analysis of embedded single-layered nanoplates
and graphene sheets by using the multiple time scale method, Comput. Math. Appl. 73,
838-854.
Wu, C.P. and Tsai, Y.H. (2009), Cylindrical bending vibration of functionally graded
piezoelectric shells using the method of perturbation, J. Eng. Math. 63, 95-119.
Wu, C.P. and Syu, Y.S. (2007)., Exact solutions of functionally graded piezoelectric shells
under cylindrical bending, Int. J. Solids Struct. 44, 6450-6472.
Yan, W., Ying, J. and Chen, W.Q. (2007), The behavior of angle-ply laminated cylindrical
shells with viscoelastic interfaces in cylindrical bending, Compos. Struct. 78, 551-559.
838-854.
Zhang, D., Di, S. and Zhang, N. (2002), A new procedure for static analysis of thermoelectric
laminated composite plates under cylindrical bending, Compos. Struct. 56, 131-
140.
Zhong, Z., Chen, S. and Shang, E. (2010), Analytical solution of a functionally graded plate
in cylindrical bending, Mech. Adv. Mater. Struct. 17, 595-602.