簡易檢索 / 詳目顯示

研究生: 黃家瑜
Huang, Jia-Yu
論文名稱: 中孔洞氧化矽及氧化鋁之合成與應用
Synthesis and Application of Mesoporous Silica and Alumina
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 79
中文關鍵詞: 中孔洞氧化矽氧化鋁孔洞材料智慧玻璃窗CsPbBr3鈣鈦礦螢光粉水溶液中氟離子之移除
外文關鍵詞: mesoporous silica, porous alumina, fluoride ion removal, liquid crystal, CsPbBr3 perovskite nanocrystals
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目錄 第一章、緒論...................................................................................................1 1.1 中孔洞材料................................................................................................................. 1 1.1.1 中孔洞氧化矽....................................................................................................... 1 1.1.2 中孔洞氧化鋁....................................................................................................... 3 1.2 界面活性劑................................................................................................................. 5 1.2.1界面活性劑基本性質及種類............................................................................... 5 1.2.2 微胞的形成........................................................................................................... 6 1.3 氧化矽源介紹............................................................................................................. 9 1.3.1 矽酸鈉(Sodium Silicate, S.S) ............................................................................... 9 1.3.2 四乙氧基矽烷(Tetraethyl Orthosilicate, TEOS) ............................................ 11 1.4 水熱法簡介............................................................................................................... 13 1.5 智慧玻璃窗(Smart Window)介紹............................................................................ 15 1.6 鈣鈦礦螢光粉之介紹27, 28........................................................................................ 18 1.7 吸附水溶液中氟離子之方法簡介34........................................................................ 19 1.7.1 吸附動力學......................................................................................................... 19 第二章、合成與鑑定.....................................................................................22 2.1 化學藥品................................................................................................................... 22 2.2 中孔洞氧化矽材料合成之步驟............................................................................... 23 2.2.1 合成長條形中孔洞氧化矽................................................................................. 23 2.2.2 合成特殊型態之中孔洞氧化矽......................................................................... 24 2.3 智慧玻璃窗的製作................................................................................................... 25 2.3.1 中孔洞氧化矽之材料疏水性官能基修飾......................................................... 25 2.3.2 智慧玻璃窗的製作............................................................................................. 26 2.4 合成CsPbBr3@SiO2螢光粉之步驟......................................................................... 27 2.4.1 合成中孔洞氧化矽載體..................................................................................... 27 2.4.2 合成CsPbBr3@SiO2螢光粉.............................................................................. 28 2.5吸附氟離子之中孔洞氧化鋁材料合成步驟............................................................ 29 2.6 儀器鑑定分析........................................................................................................... 30 2.6.1 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)........................ 30 2.6.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) ............................. 30 2.6.3 熱重分析儀(Thermogravimetry Analysis, TGA).............................................. 31 2.6.4 氮氣等溫吸附/脫附測量(N2 Adsorption-Desorption Isotherm)....................... 31 2.6.5 X-射線粉末繞射光譜(Powder X-Ray Diffraction, PXRD).............................. 35 2.6.6 螢光光譜儀(Fluorescence Spectrophotometer).................................................. 36 2.6.7 氟離子電極......................................................................................................... 37 第三章、不同型態之中孔洞氧化矽運用於智慧玻璃窗及螢光粉載體....38 3.1 研究動機................................................................................................................... 38 3.2 合成長條狀中孔洞氧化矽材料............................................................................... 39 3.2.1以倒入大量鹼性緩衝溶液方式合成長條型中孔洞氧化矽............................. 39 3.2.2探討C16TABr/SDS莫耳比對型態之影響........................................................ 42 3.3 合成多種形態之中孔洞氧化矽材料....................................................................... 43 3.3.1 探討硬脂酸鈉/C16TAB莫耳比和反應pH值對型態之影響........................... 44 3.3.2 探討不同反應時間及水熱與否對型態之影響................................................. 49 3.4 不同構型之中孔洞氧化矽材料應用於智慧玻璃窗............................................... 51 3.5 中孔洞氧化矽應用於合成CsPbBr3@SiO2 ............................................................. 56 3.5.1選擇silica gel/MS莫耳比例.............................................................................. 56 3.5.2 中孔洞氧化矽之孔洞大小對發光強度的影響................................................. 57 3.5.3 選擇CsBr/PbBr2之比例.................................................................................... 59 3.5.4 摻雜不同鹵素對螢光粉之放光波長的影響..................................................... 59 第四章、氧化鋁孔洞材料於吸附水中氟離子之應用................................62 III 4.1 研究動機................................................................................................................... 62 4.2 不同金屬氧化物孔洞材料對於吸附氟離子之效率............................................... 63 4.3 藉由調控反應條件來改變活性氧化鋁之晶相....................................................... 63 4.4 探討不同氧化鋁晶相對氟離子吸附之效率........................................................... 66 4.5氧化鋁孔洞材料對於吸附氟離子之動力學探討.................................................... 68 4.6 探討雙金屬造粒對於吸附氟離子之效率............................................................... 71 第五章、總結.....................................................................................74 參考文獻............................................................................................76

    1. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
    2. Mukhopadhyay, S.; Veroniaina, H.; Chimombe, T.; Han, L.; Zhenghong, W.; Xiaole, Q., Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: an overview. RSC Advances 2019, 9 (61), 35566-35578.
    3. Wu, C.-G.; Bein, T., Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science 1994, 264 (5166), 1757.
    4. Wu, C.-G.; Bein, T., Conducting Carbon Wires in Ordered, Nanometer-Sized Channels. Science 1994, 266 (5187), 1013.
    5. Lee, Y. S.; Surjadi, D.; Rathman, J. F., Effects of Aluminate and Silicate on the Structure of Quaternary Ammonium Surfactant Aggregates. Langmuir 1996, 12 (26), 6202-6210.
    6. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 2013, 42 (9), 3862-3875.
    7. Dodoo-Arhin, D.; Nuamah, R. A.; Agyei-Tuffour, B.; Obada, D. O.; Yaya, A., Awaso bauxite red mud-cement based composites: Characterisation for pavement applications. Case Studies in Construction Materials 2017, 7, 45-55.
    8. Wefers, K.; Misra, C., Oxides and hydroxides of aluminum. Alcoa Laboratories Pittsburgh, PA: 1987; Vol. 19.
    9. Kim, H. N.; Lee, S. K., Effect of particle size on phase transitions in metastable alumina nanoparticles: A view from high-resolution solid-state 27Al NMR study. American Mineralogist 2013, 98 (7), 1198-1210.
    10. Iijima, S.; Yumura, T.; Liu, Z., One-dimensional nanowires of pseudoboehmite (aluminum oxyhydroxide γ-AlOOH). Proc Natl Acad Sci U S A 2016, 113 (42), 11759-11764.
    11. Zhitova, E. S.; Pekov, I. V.; Chaikovskiy, I. I.; Chirkova, E. P.; Yapaskurt, V. O.; Bychkova, Y. V.; Belakovskiy, D. I.; Chukanov, N. V.; Zubkova, N. V.; Krivovichev, S. V., Dritsite, Li2Al4(OH)12Cl2· 3H2O, a new gibbsite-based hydrotalcite supergroup mineral. Minerals 2019, 9 (8), 492.
    12. Ewa, O.; Ruman, M.; Drąg-Śmigalska, M.; Polkowska, Ż., Selected anionic and cationic surface active agents: case study on the Kłodnica sediments. Limnological Review 2017, 17, 11-21.
    13. Nesměrák, K.; Němcová, I., Determination of critical micelle concentration by
    electrochemical means. Analytical letters 2006, 39 (6), 1023-1040.
    14. Maibaum, L.; Dinner, A. R.; Chandler, D., Micelle formation and the hydrophobic effect. The Journal of Physical Chemistry B 2004, 108 (21), 6778-6781.
    15. Frahm, J.; Diekmann, S.; Haase, A., Electrostatic properties of ionic micelles in aqueous solutions. Berichte der Bunsengesellschaft für physikalische Chemie 1980, 84 (6), 566-571.
    16. Mitchell, D. J.; Ninham, B. W., Micelles, vesicles and microemulsions. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1981, 77 (4), 601-629.
    17. Israelachvili, J.; Marčelja, S.; Horn, R. G., Physical principles of membrane organization. Quarterly reviews of biophysics 1980, 13 (2), 121-200.
    18. Ballesteros-Gómez, A.; Sicilia, M. D.; Rubio, S., Supramolecular solvents in the extraction of organic compounds. A review. Analytica Chimica Acta 2010, 677 (2), 108-130.
    19. Lin, H.-P.; Mou, C.-Y., Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts of Chemical Research 2002, 35 (11), 927-935.
    20. Culbertson, B. M.; McGrath, J. E., Advances in polymer synthesis. Springer Science & Business Media: 2012; Vol. 31.
    21. Aelion, R.; Loebel, A.; Eirich, F., Hydrolysis of ethyl silicate. Journal of the American chemical society 1950, 72 (12), 5705-5712.
    22.劉冠岑, 使用陰-陽離子混合界面活性劑合成各種型態之中孔洞氧化矽、磷酸鈣、磷酸鈣/二氧化矽複合材料. 2011.
    23. 盧宏陽, 以溶膠-凝膠法合成高分子基氧化矽複合材料之研究. 2001.
    24. Walton, R. I., Subcritical solvothermal synthesis of condensed inorganic materials. Chemical Society Reviews 2002, 31 (4), 230-238.
    25. Laudise, R. A., Hydrothermal synthesis of crystals. 50 years Progress in Crystal Growth 2004, 185.
    26. Baetens, R.; Jelle, B. P.; Gustavsen, A., Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar energy materials and solar cells 2010, 94 (2), 87-105.
    27. Zhang, K.; Zhu, N.; Zhang, M.; Wang, L.; Xing, J., Opportunities and challenges in perovskite LED commercialization. Journal of Materials Chemistry C 2021, 9 (11), 3795-3799.
    28. Zhang, Q.; Wang, B.; Zheng, W.; Kong, L.; Wan, Q.; Zhang, C.; Li, Z.; Cao, X.; Liu, M.; Li, L., Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nature communications 2020, 11 (1), 1-9.
    29. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of cesium lead halide
    perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano letters 2015, 15 (6), 3692-3696.
    30. Xie, Y.; Yu, Y.; Gong, J.; Yang, C.; Zeng, P.; Dong, Y.; Yang, B.; Liang, R.; Ou, Q.; Zhang, S., Encapsulated room-temperature synthesized CsPbX3 perovskite quantum dots with high stability and wide color gamut for display. Optical Materials Express 2018, 8 (11), 3494-3505.
    31. Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D. T.; Buonsanti, R., CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angewandte Chemie International Edition 2017, 56 (36), 10696-10701.
    32. Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z.; Zheng, W., Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Advanced Functional Materials 2018, 28 (1), 1704288.
    33. Liu, H.; Tan, Y.; Cao, M.; Hu, H.; Wu, L.; Yu, X.; Wang, L.; Sun, B.; Zhang, Q., Fabricating CsPbX3-based type I and type II heterostructures by tuning the halide composition of janus CsPbX3/ZrO2 nanocrystals. ACS nano 2019, 13 (5), 5366-5374.
    34. Mohapatra, M.; Anand, S.; Mishra, B. K.; Giles, D. E.; Singh, P., Review of fluoride removal from drinking water. Journal of environmental management 2009, 91 (1), 67-77.
    35. Sarkar, M.; Acharya, P. K.; Bhattacharya, B., Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters. Journal of colloid and interface science 2003, 266 (1), 28-32.
    36. Wang, J.; Guo, X., Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials 2020, 390, 122156.
    37. Ball, W. P.; Roberts, P. V., Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion. Environmental Science & Technology 1991, 25 (7), 1237-1249.
    38. Yuh-Shan, H., Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004, 59 (1), 171-177.
    39. Ho, Y.-S.; McKay, G., Pseudo-second order model for sorption processes. Process biochemistry 1999, 34 (5), 451-465.
    40. Donohue, M.; Aranovich, G., Classification of Gibbs adsorption isotherms. Advances in colloid and interface science 1998, 76, 137-152.
    41. Bardestani, R.; Patience, G. S.; Kaliaguine, S., Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering 2019, 97 (11), 2781-2791.
    42. Montheil, T.; Echalier, C.; Martinez, J.; Subra, G.; Mehdi, A., Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. Journal of Materials Chemistry B 2018, 6 (21), 3434-3448.
    43. Mouquinho, A. I.; Petrova, K.; Barros, M. T.; Sotomayor, J., New polymer networks for PDLC films application. New Polymers for Special Applications 2012, 139-164.
    44. Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S., Mesoporous silica particles integrated with all‐inorganic CsPbBr3 perovskite quantum‐dot nanocomposites (MP‐PQDs) with high stability and wide color gamut used for backlight display. Angewandte Chemie International Edition 2016, 55 (28), 7924-7929.
    45. Baranov, D.; Caputo, G.; Goldoni, L.; Dang, Z.; Scarfiello, R.; De Trizio, L.; Portone, A.; Fabbri, F.; Camposeo, A.; Pisignano, D., Transforming colloidal Cs4PbBr6 nanocrystals with poly (maleic anhydride-alt-1-octadecene) into stable CsPbBr3 perovskite emitters through intermediate heterostructures. Chemical science 2020, 11 (15), 3986-3995.
    46. Nabbou, N.; Belhachemi, M.; Boumelik, M.; Merzougui, T.; Lahcene, D.; Harek, Y.; Zorpas, A. A.; Jeguirim, M., Removal of fluoride from groundwater using natural clay (kaolinite): Optimization of adsorption conditions. Comptes Rendus Chimie 2019, 22 (2), 105-112.
    47. Pearson, R. G., Hard and soft acids and bases, HSAB, part 1: Fundamental principles. Journal of Chemical Education 1968, 45 (9), 581.
    48. Bell, T.; González-Carballo, J.; Tooze, R.; Torrente-Murciano, L., γ-Al2O3 nanorods with tuneable dimensions–a mechanistic understanding of their hydrothermal synthesis. RSC advances 2017, 7 (36), 22369-22377.

    無法下載圖示 校內:2026-07-30公開
    校外:2026-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE