簡易檢索 / 詳目顯示

研究生: 洪羽璇
Hung, Yu-Hsuan
論文名稱: 準分子雷射與孔洞面積光學繞射原理應用於製作特殊形貌之三維微結構
Excimer Laser Micromachining of Three-Dimensional (3D) Microstructures Based on Hole Area Modulation and Optical Diffraction Principle
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 79
中文關鍵詞: 準分子雷射微細加工孔洞面積法任意形貌3D微結構光學繞射部分同調成像理論
外文關鍵詞: 3D Microstructures, Excimer Laser Micromachining, Hole Area Modulation (HAM), Optical Diffraction, Partially Coherent Imaging
相關次數: 點閱:131下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目的為利用準分子雷射加工製作特殊形貌之3D微結構。主要重點是利用準分子雷射孔洞面積法(Hole Area Modulation)搭配投射鏡產生的繞射現象,能達到加工任意形貌3D微結構。採用此法可避免灰階光罩製作成本過高,且不須像傳統式孔洞面積法移動工件的方法來降低表面粗糙度。
    本論文包含理論分析、實驗驗證、與加工測試三大部分。理論分析部分將完整地解析準分子雷射微加工系統中的光學繞射現象,並完成數值模擬;實驗驗證部分將針對所建置的準分子雷射微加工系統,以實驗的方式,建構透光機率與加工率對照曲線圖,作為之後設計光罩的對照準則;加工測試部分將根據所建立之理論與實驗結果,選擇幾種具複雜形貌的3D微結構,實際設計與製作光罩,在試片上進行繞射光學的加工,以驗證此一3D微結構加工方法的可行性、加工精度、適用範圍與限制。
    實驗結果證實可透過此方法加工任意形貌3D微結構,其誤差量大致可控制在1 μm內,但在錐體尖銳處的加工結果為圓弧狀的形貌,此外在垂直壁處會被稍微平滑化。

    The purpose of this thesis is to use an excimer laser micromachining system to fabricate 3D microstructures with quite arbitrary profiles. The key point of this method depends on the optical diffraction phenomenon when applying a Hole Area Modulation (HAM) method with an optical image projection system. The advantages of this method are its straightforwardness, easiness in application, low-cost, and most importantly, its capability to produce three-dimensional (3D) microstructures with versatile surface profile.
    In this thesis, the optical diffraction effect existing in an excimer laser micromachining system will be first studied both theoretically and experimentally. The first goal is to determine quantitatively how the laser machining rate is affected by the optical diffraction of mask patterns with different hole-radius and pitches. Based on this result, several 3D microstructures with different surface profiles are chosen and implemented through photo-mask design and excimer laser machining. The experiment results are compared with simulation data to verify the feasibility, precision, and limitations of this 3D microstructure fabrication method.
    Using this method, 3D microstructures with complicated profiles can be easily fabricated and the surface roughness is significantly improved. As can be expected, surface profiles containing sharp edges and pointed angles are less applicable by this laser machining method. Otherwise, the machining accuracy can be controlled within 1 μm.

    摘要 I Abstract II 誌謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIV 符號說明 XV 第一章 緒論 1 1-1 背景介紹 1 1-2 文獻回顧 2 1-3 本研究動機與目標 12 1-4 本文架構 13 第二章 準分子雷射與繞射式孔洞面積光罩法 15 2-1 準分子雷射加工原理 15 2-2 準分子雷射加工系統 17 2-3 繞射式孔洞面積光罩法 20 2-4 光罩設計流程 23 第三章 成像理論 25 3-1 光的空間同調性 25 3-1-1 同調 25 3-1-2 準單色光條件下的同調性 28 3-1-3 非同調準單色集合光源 30 3-1-4 交互強度的傳播 32 3-2 科勒照明系統(Köhler illumination system) 33 3-3 投射鏡 34 3-4 部分同調成像 40 第四章 光學預測模式 42 4-1 光學導引鏡組 45 4-1-1 歪像柱狀望遠鏡系統 45 4-1-2 均光鏡系統 47 4-2 數值方法 51 4-2-1 阿貝空間同調成像計算法 52 4-2-2 矩陣計算法 53 第五章 實驗結果與討論 63 5-1 透光機率與加工率對照曲線圖 63 5-2 特殊形貌之三維微結構 66 5-2-1 大面積陣列圖案 66 5-2-2 任意圖案 73 第六章 結論與未來展望 75 6-1 結論 75 6-2 未來展望 75 參考文獻 76

    [1] T. Fujita, H. Nishihara, and J. Koyama, "Fabrication of micro lenses using electron-beam lithography," Opt. Lett. 6(12), pp. 613-615, 1981.
    [2] T. Fujita, H. Nishihara, and J. Koyama, "Blazed gratings and Fresnel lenses fabricated by electron-beam lithography," Opt. Lett. 7(12), pp. 578-580, 1982.
    [3] Y. Fu and N. K. Bryan, "Semiconductor microlenses fabricated by one-step focused ion beam direct writing," IEEE Trans. Semicond. Manuf. 15(2), pp. 229-231, 2002.
    [4] N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgon, "Photolytic technique for producing microlenses in photosensitive glass," Appl. Opt. 24(16), pp. 2520-2525, 1985.
    [5] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, "Technique for monolithic fabrication of microlens arrays," Appl. Opt. 27(7), pp. 1281-1284, 1988.
    [6] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photon. Technol. Lett. 6(9), pp. 1112-1114, 1994.
    [7] M. Frank, M. Kufner, S. Kufner, and M. Testorf, "Microlenses in polymethyl methacrylate with high relative aperture," Appl. Opt. 30(19), pp. 2666-2667, 1991.
    [8] S. Lazare, J. Lopez, J.-M. Turlet, M. Kufner, S. Kufner, and P. Chavel, "Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion," Appl. Opt. 35(22), pp. 4471-4475, 1996.
    [9] C.-S. Lee and C.-H. Han, "A novel refractive silicon microlens array using bulk micromachining technology," Sensors and Actuators A: Physical 88(1), pp. 87-90, 2001.
    [10] N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron. Eng. 60(3-4), pp. 365-379, 2002.
    [11] S. Zio´łkowski, I. Frese, H. Kasprzak, and S. Kufner, "Contactless embossing of microlenses—a parameter study," Opt. Eng. 42(5), pp. 1451-1455, 2003.
    [12] W. Däschner, P. Long, R. Stein, C. Wu, and S. H. Lee, "General aspheric refractive micro‐optics fabricated by optical lithography using a high energy beam sensitive glass gray‐level mask," J. Vac. Sci. Technol. B 14(6), pp. 3730-3733, 1996.
    [13] M. R. Wang and H. Su, "Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication," Appl. Opt. 37(32), pp. 7568-7576, 1998.
    [14] C.-H. Tien, Y.-E. Chien, Y. Chiu, and H.-P. D. Shieh, "Microlens array fabricated by excimer laser micromachining with gray-tone photolithography," Jpn. J. Appl. Phys. 42(3), pp. 1280-1283, 2003.
    [15] "灰階光罩於微型光學元件之應用", 交通大學顯示系統研究室.
    [16] K. Zimmer, D. Hirsch, and F. Bigl, "Excimer laser machining for the fabrication of analogous microstructures," Appl. Surf. Sci. 96-98, pp. 425-429, 1996.
    [17] K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, "Direct writing of microlenses in polycarbonate with excimer laser ablation," Appl. Opt. 42(31), pp. 6349-6359, 2003.
    [18] K. Naessens, H. Ottevaere, P. V. Daele, and R. Baets, "Flexible fabrication of microlenses in polymer layers with excimer laser ablation," Appl. Surf. Sci. 208-209, pp. 159-164, 2003.
    [19] T. Masuzawa, J. Olde-Benneker, and J. J. C. Eindhoven, "A new method for three dimensional excimer laser micromachining, Hole Area Modulation (HAM)," Annals of the CIRP 49(1), pp. 139-142, 2000.
    [20] K. H. Choi, J. Meijer, T. Masuzawa, and D.-H. Kim, "Excimer laser micromachining for 3D microstructure," J. Mater. Process. Technol. 149(1-3), pp. 561-566, 2004.
    [21] N. G. Basov, V. A. Danilychev, Y. M. Popov, and D. D. Khodkevich, "Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam," JETP Lett. 12, pp. 329-331, 1970.
    [22] S. K. Searles and G. A. Hart, "Stimulated emission at 281.8 nm from XeBr," Appl. Phys. Lett. 27(4), pp. 243-245, 1975.
    [23] A. A. Tseng, Y.-T. Chen, and K.-J. Ma, "Fabrication of high-aspect-ratio microstructures using excimer laser," Opt. Lasers Eng. 41(6), pp. 827-847, 2004.
    [24] "COMPexPro Series", Available: http://www.coherent.com/products/index.cfm?fuseaction=popups.ShowAttributes&ID=1027
    [25] 蘇家穎, "光學成像理論應用於準分子雷射微細加工系統之理論與實驗研究", 國立成功大學機械工程研究所碩士論文, 2011.
    [26] A. K.-K. Wong, Optical Imaging in Projection Microlithography, (SPIE Press, 2005), Chap. 4.
    [27] J. W. Goodman, Statistical Optics, (John Wiley & Sons, 1985), Chap. 5.
    [28] J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Co., 2005).
    [29] C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication, (John Wiley & Sons, 2007), Chap. 2.
    [30] "Fly's Eye Arrays for Uniform Illumination in Digital Projector Optics", Available: http://www.zemax.com/downloads/WhitePapers/Zemax_FlyEyeArrays-UniformIllumination-DigitalProjectorOptics-WP-130204.pdf
    [31] K. Yamazoe, "Computation theory of partially coherent imaging by stacked pupil shift matrix," J. Opt. Soc. Am. A 25(12), pp. 3111-3119, 2008.
    [32] K. Yamazoe, "Two matrix approaches for aerial image formation obtained by extending and modifying the transmission cross coefficients," J. Opt. Soc. Am. A 27(6), pp. 1311-1321, 2010.
    [33] K. Yamazoe, "Fast fine-pixel aerial image calculation in partially coherent imaging by matrix representation of modified Hopkins equation," Appl. Opt. 49(20), pp. 3909-3915, 2010.

    下載圖示 校內:2019-08-27公開
    校外:2019-08-27公開
    QR CODE