簡易檢索 / 詳目顯示

研究生: 潘彥儒
Pan, Yen-Ju
論文名稱: 天然有機物之成份與消毒副產物生成潛勢之關係
The relationship between organic fractions of NOM and disinfection by-products formation potential
指導教授: 葉宣顯
Yeh, Hsuan-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 94
中文關鍵詞: 天然有機物HPSEC消毒副產物
外文關鍵詞: NOM, HPSEC, disinfection by-product, peak fitting
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 天然有機物(Natural Organic Matter)是大量存在於河川、湖泊、水庫等飲用水水源中之複雜有機物混和物,對水質及水處理程序有重大影響,其中對人體健康之重大影響是天然有機物於消毒程序中,會與消毒劑反應生成具有致癌性的消毒副產物,其中以三鹵甲烷(THM)與鹵化乙酸(HAA)占有較高的比例。
    本研究以腐植酸(Humic acid)、黃酸(Fulvic acid)、蛋白質(BSA)與藻酸(Alginic acid)等四種有機物,模擬天然原水中由土壤、植物殘體降解產生的腐植質,以及水生動物、藻類的代謝物質。作為疏水性與親水性有機物代表。並以高效能粒徑排除層析儀(HPSEC)連接線上UV/Vis偵測器與OC偵測器分析個別有機物與混合有機物之分子量分佈與特性。搭配Peak fit軟體分析HPSEC圖譜中各有機物族群面積之變化。之後與消毒副產物生成潛勢之結果做比較。
    研究結果顯示,腐植酸和黃酸等腐植質類的有機物,因含有較多的苯環和酚基,具有相當高的消毒副產物生成潛能。而大分子的蛋白質,也對THM與HAA有很高的貢獻度。雖然藻酸的HPSEC訊號也出現在Peak A,屬於大分子的有機物。但是其多醣類之組成對消毒副產物之貢獻不大,與消毒劑的反應速率也較其他有機物慢。
    由混合水樣之HPSEC-OCD之圖譜結果可發現,親水性物質濃度增加會使Peak A面積大幅增加,但是消毒副產物生成之增加幅度較低,使得單位面積增加所貢獻之消毒副產物量較疏水性物質者低。而Peak B面積增加來源是疏水性的腐植酸和黃酸,單位面積的變化對消毒副產物生成有明顯之影響

    Disinfection is an important unit in conventional water treatment plant to kill pathogenic microorganisms. Natural organic matter (NOM) exist ubiquitously in drinking water source and have impact on human health due to the formation of disinfection by-products (DBPs) when reacted with disinfectant. Two of the most important DBPs are trihalomethane (THM) and haloacetic (HAA). The main purpose of this study is to understand the relationship between NOM fractions and DBPs formation potential. Four model compounds have been used to simulate the NOM in natural water. Humic acid and fulvic acid are used to represent the hydrophobic organic matters, while BSA (bovine serum albumin) and alginic acid to represent the hydrophilic organic matters. Water quality analysis include global parameters, such as NPDOC, UV254 and SUVA value. And the high performance size exclusion chromatography (HPSEC) with UV/Vis and organic carbon (OC) detectors were used to characterize NOM fractions. The results illustrated that humic acid and fulvic acid had high disinfection by-products formation potential due to their aromatic structures. The high molecular weight BSA also contributed to high THM and HAA formation potential. However, alginic acid, which also has high molecular weight, showed very low reaction rate with chlorine, and low DBPs formation.
    Based on HPSEC-OCD chromatograms, the area of peak A (biopolymers) increased proportionally with the concentration of hydrophilic compounds, such as BSA and alginic acid. However, the increase in DBPs concentration per unit increase in organic model compound was low. However, the increase in the area of peak B (humic substances), due to the increase of hydrophobic compounds, such as humic acid and fulvic acid, induced significant DBPs formation. Therefore, it can be concluded that NOM contained in peak B are more significant DBP precursors than those of peak A.

    摘要 I Extended Abstract III 致謝 VIII 目錄 X 圖目錄 XIII 表目錄 XV 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 天然有機物 3 2-1-1 天然有機物之來源 4 2-1-2 天然有機物之分類與特性 5 2-1-3 有機物之分析方法 9 2-1-3-1 水質參數 9 2-1-3-2 HPSEC粒徑排除層析儀分析原理 10 2-2 消毒副產物 16 2-2-1 消毒副產物生成 18 2-2-2 影響消毒副產物生成之因素 21 2-2-2-1 水質因素 21 2-2-2-2 操作條件 22 2-2-3 有機物與消毒副產物之關係 24 2-2-4 消毒副產物對健康的影響與規範 25 2-2-5 消毒副產物的控制 28 第三章 實驗流程與方法 30 3-1 實驗流程 30 3-2 人工原水配製 32 3-3 加氯試驗 34 3-4 水質分析 35 3-4-1 pH值 35 3-4-2 UV吸光值 35 3-4-3 非揮發溶解性有機物(Non-Purgable Dissolved Organic Carbon, NPDOC)分析 35 3-4-4 三鹵甲烷生成潛勢(THM formation potenial, THMFP)分析 36 3-4-5 鹵化乙酸生成潛勢(HAA formation potenial, HAAFP)分析 39 3-5 有機物特性分析 41 第四章 結果與討論 43 4-1 各類有機物分析結果 43 4-1-1 有機物特性分析 43 4-1-2 加氯試驗結果 50 4-1-3 消毒副產物生成潛勢結果 53 4-1-4 HPSEC變化與消毒副產物之生成關係 55 4-2 模擬原水之混合水樣分析結果 56 4-2-1 有機物特性分析 57 4-2-2 消毒副產物之生成 67 4-2-3 HPSEC與消毒副產物之相關性 69 4-3 加氯後有機物組成變化 73 第五章 結論與建議 75 5-1結論 75 5-2建議 77 參考文獻 78 附錄 90

    Amy, G. L., Alleman, B. C., & Cluff, C. B. (1990). Removal of dissolved organic matter by nanofiltration. Journal of Environmental Engineering, 116(1), 200-205.
    Amy, G. L., Tan, L., & Davis, M. K. (1991). The Effects of Ozonation and Activated Carbon Adsorption on Trihalomethane Speciation. Water Research, 25(2): 191-202.
    Aiken, G.R., McKnight, D., Wershaw, R., and Miller, L., (1991). Evidence for diffusion of aquatic fulvic acid from the sediments of Lake Fryxell, Antarctica. Organic Substances and Sediments in Water, V. 1, Humics and Soils. Edited by R. A. Baker, Chelsea, Mich.: Lewis Publishers.
    Arora, H., LeChevallier, M.W., and Dixon, K.L. (1997). DBP Occurrence Survey. Journal American Water Works Association, 89 (6): 60.
    AWWARF (1998) Microbial impact of Biological filtration, AWWA Research Foundation and American Water Works Association, Denver, CO
    Bilbulatov, E.S. and Skopintsev, B.A., (1979). Assessment of techniques for the determination of organic carbon content of natural water by light absorption in the ultraviolet region, Issues of methodology of hydrochemical studies under the conditions of anthropogenic impact. Trans XXVII All-Union Hydrochem. Meeting, Leningrad: Gidrometeoizdat, part 1, pp. 108-109.
    Baker, A., N. Hudson and D. Reynolds (2007). "Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters - A review." River Research and Applications 23(6): 631-649.
    Bridgeman, J., M. Bieroza and A. Baker (2009). "Relating freshwater organic matter fluorescence to organic carbon removal efficiency in drinking water treatment." Science of the Total Environment 407(5): 1765-1774.
    Boyce, S. D., & Hornig, J. F. (1983). Reaction pathways of trihalomethane formation from the halogenation of dihydroxyaromatic model compounds for humic acid. Environmental Science & Technology, 17(4), 202-211.
    Bond, T., Goslan, E. H., Parsons, S. A., & Jefferson, B. (2012). A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates. Environmental Technology Reviews, 1(1): 93-113.
    Black, B.D, Harrington, G.W., Singer, P.C. (1996). Reducing cancer risks by improving organic carbon removal. Journal American Water Works Association, 88(6):40–52
    Bull, R. J., & Kopfler, F. C. (1991). Health effects of disinfectants and disinfection by-products. Journal American Water Works Association.
    Bull, R. J., Sanchez, I. M., Nelson, M. A., Larson, J. L., & Lansing, A. J. (1990). Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate. Toxicology, 63(3), 341-359.
    Bove, F. J., Fulcomer, M. C., Klotz, J. B., Esmart, J., & Savrin, J. E. (1992). REPORT ON PHASE IV-B: PUBLIC DRINKING WATER CONTAMINATION AND BIRTHWEIGHT. AND SELECTED BIRTH DEFECTS. Population-basedsurveillanceand etiological research of adverse reproductive outcomes and toxic wastes. New Jersey Department of Health.
    Crittenden, R. Rhodes Trussell, David W. Hand, Kerry J. Howe, & Tchobanoglous, G. (2012). MWH's Water Treatment: Principles and Design, Third Edition: John Wiley & Sons, Inc.
    Chen, W., P. Westerhoff, J. A. Leenheer and K. Booksh (2003). "Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter." Environmental Science & Technology 37(24): 5701-5710.
    Chen, C., Zhang, X. J., Zhu, L. X., Liu, J., & He, W. J. (2008). Disinfection by-products and their precursors in a water treatment plant in North China: seasonal changes and fraction analysis. Science of the Total Environment, 397(1), 140-147.
    Coble, P.G., (1996). Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Mar. Chem. 51, 325–346.
    Christman, R. F., Norwood, D. L., Millington, D. S., Johnson, J. D., & Stevens, A. A. (1983). Identity and Yields of Major Halogenated Products of Aquatic Fulvic-Acid Chlorination. Environmental Science & Technology, 17(10): 625-628.
    Cowman, G. A., & Singer, P. C. (1996). Effect of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances. Environmental Science & Technology, 30(1): 16-24.
    Carlson, M. and D. Hardy. (1998). Controlling DBPs With Monochloramine. Jour. AWWA 90:2:95.
    Cicmanec, J. L., Condie, L. W., Olson, G. R., & Wang, S. R. (1991). 90-Day toxicity study of dichloroacetate in dogs. Toxicological Sciences, 17(2), 376-389.
    De Ridder, D.J., A.R.D, Verliefde, S.G.J. Heijman, Q.J.C. Verberk, L.C. Rietveld, L.T.J. van der Aa, G.L. Amy, and J.C. van Dijk, (2011). Influence of natural and charged pharmaceuticals onto activated cabon. Water Science and Technology, 63, 416-423.
    Duan, J. M., & Gregory, J. (2003). Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100: 475-502.
    Danielsson, L.G., (1982). On the use of filters for distinguishing between dissolved and particlulate fractions in natural water. Water Research, 16, 179-182.
    Dunnick, J. K., Haseman, J. K., Lilja, H. S., & Wyand, S. (1985). Toxicity and carcinogenicity of chlorodibromomethane in Fischer 344/N rats and B6C3F1 mice. Toxicological Sciences, 5(6part1), 1128-1136.
    Dunnick, J. K., & Melnick, R. L. (1993). Assessment of the carcinogenic potential of chlorinated water: experimental studies of chlorine, chloramine, and trihalomethanes. Journal of the National Cancer Institute, 85(10), 817-822.
    DeAngelo, A. B., Daniel, F. B., Stober, J. A., & Olson, G. R. (1991). The carcinogenicity of dichloroacetic acid in the male B6C3F 1 mouse. Fundamental and Applied Toxicology, 16(2), 337-347.
    Eikebrokk, B., R.D. Vogt, and H. Liktved, (2004). NOM increase in Northern European source waters: discussion of possible causes and impacts on coagulation/contact filtration process. Water Science and Techology: Water Supply, 4(4), 47-54.
    Edzwald, J.K., and Tobiason, J.E., (1999). Enhanced Coagulation: US requirements and a broader view. Water Science and Technology, 40(9), 63-70.
    Fabris, R., C.W.K. Chow, M. Drikas, and B. Eikebrokk, (2008). Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Research, 42, 4188-4196.
    Fukano, K., Komiya, K., Sasaki, H., Hashimoto, T., (1978). Evaluation of new supports for high-pressure aqueous gel permeation chromatography: TSK-GEL SW type columns. J. Chromatogr. A 166, 47–54.
    Gregor, J. E., Nokes, C. J., & Fenton, E. (1997). Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation. Water Research, 31(12): 2949-2958.
    Gjessing, E., (1965). Use of Sephadex gels for estimation of humic substances in natural water. Nature 208, 1091–1092.
    Golfinopoulos, S. K. (2000). The occurrence of trihalomethanes in the drinking water in Greece. Chemosphere, 41(11), 1761-1767.
    Greenberg, A. E., (1980). Water Chlorination: Environmental Impact and Health Effects.,volume 3, page 3, Ann Arbor Science.
    Huber, S. A. (2007). LC-OCD applications [Online]. DOC-Labor Or. Huber(online). Available: http://www.doc-labor.de/(accessed 01 August 2007).
    Huber, S. A., Balz, A., Abert, M., & Pronk, W. (2011). Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography - organic carbon detection - organic nitrogen detection (LC-OCD-OND). Water Research, 45(2): 879-885.
    Hudson, N., Baker, A., & Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Research and Applications, 23(6), 631-649.
    Hua, G., Reckhow, D., (2007). Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environ. Sci. Technol. 41, 3309–3315. Jacangelo, J.G., J. DeMarco, D. Owen, S. Randtke., (1995a). Selected processes for removing NOM: an overview. Jour. AWWA, 87(1), 64-77.
    Hong, H. C., Wong, M. H., & Liang, Y. (2009). Amino Acids as Precursors of Trihalomethane and Haloacetic Acid Formation During Chlorination. Archives of Environmental Contamination and Toxicology, 56(4): 638-645.
    Jung, C. W., & Son, H. J. (2008). The relationship between disinfection by-products formation and characteristics of natural organic matter in raw water. Korean Journal of Chemical Engineering, 25(4), 714-720.
    Johnson, J. D., & Jensen, J. N. (1986). Thm and Tox Formation - Routes, Rates, and Precursors. Journal American Water Works Association, 78(4): 156-162.
    Jorgenson, T. A., Meierhenry, E. F., Rushbrook, C. J., Bull, R. J., & Robinson, M. (1985). Carcinogenicity of chloroform in drinking water to male Osborne-Mendel rats and female B6C3F1 mice. Toxicological Sciences, 5(4), 760-769.
    Kimura, K., Y. Hane, Y. Watanabe, G. Amy, N. Ohkuma., (2004). Irreversible membrane fouling during ultrafiltration of surface water. Water Research, 38, 3431-3441.
    KIM, H. C. & YU, M. J. (2005). Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control. Water Research, 39, 4779-4789.
    Krasner, S. W., Croue, J. P., Buffle, J., & Perdue, E. M. (1996). Three approaches for characterizing NOM. Journal American Water Works Association, 88(6): 66-79.
    Krasner, S. W., McGuire, M. J., Jacangelo, J. G., Patania, N. L., Reagan, K. M., & Aieta, E. M. (1989). The occurrence of disinfection by-products in US drinking water. Journal-American Water Works Association, 81(8), 41-53.
    Krasner, S. W., Sclimenti, M. J., & Means, E. G. (1994). Quality Degradation - Implications for Dbp Formation. Journal American Water Works Association, 86(6): 34-47.
    King, W. D., & Marrett, L. D. (1996). Case-control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada). Cancer Causes & Control, 7(6), 596-604.
    Katz, R., Tai, C. N., Diener, R. M., McConnell, R. F., & Semonick, D. E. (1981). Dichloroacetate, sodium: 3-month oral toxicity studies in rats and dogs. Toxicology and applied pharmacology, 57(2), 273-287.
    Keith DE, Jr, Brine GA, Carroll FI, Evans CJ. (2000) Ligand-induced changes in surface μ-opioid receptor number: relationship to G protein activation? J Pharmacol Exp Ther 292:1127–1134.
    Leenheer, J.A. and Croue, J.-P. (2003). Characterizing Dissolved Aquatic Organic matter: Understanding the unknown structures is key to better treatment of drinking water. Environ. Sci. Technol., 37(1), 19A-26A.
    Lozovik, P.A., A.K. Morozov, M.B. Zobkov, T.A. Dukhovicheva, and L.A. Osipova, (2007). Allochthonous and autochthonous organic matter in surface water in Karelia. Water Resour., 34(2), 204-216.
    Lakowicz. (1999). Principle of fluorescence Spectroscopy 2nd Edtion. Kluwer Academic/Plenum Publishers: New York.
    Li, C. W., Benjamin, M. M., & Korshin, G. V. (2000). Use of UV spectroscopy to characterize the reaction between NOM and free chlorine. Environmental science & technology, 34(12), 2570-2575.
    McDonald, S., Bishop, A. G., Prenzler, P. D., & Robards, K. (2004). Analytical chemistry of freshwater humic substances. Analytica Chimica Acta, 527(2), 105-124.
    Marhaba, T. F., & Van, D. (2000). The variation of mass and disinfection by-product formation potential of dissolved organic matter fractions along a conventional surface water treatment plant. Journal of Hazardous Materials, 74(3): 133-147.
    Nguyen, M. L., Westerhoff, P., Baker, L., Hu, Q., Esparza-Soto, M., & Sommerfeld, M. (2005). Characteristics and reactivity of algae-produced dissolved organic carbon. Journal of Environmental Engineering-Asce, 131(11): 1574-1582.
    Owen, D.M., G.L. Amy, Z.K. Chowdhury, R. Paode, G. McCoy, K. Viscosil, (1995). NOM characterization and treatability. Jour. AWWA., 87, 46-63.
    Peña-Méndez, E. M., Havel, J., & Patočka, J. (2005). Humic substances - compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine Journal of Applied Biomedicine, 3: 13-24.
    Posner, A., (1963). Importance of electrolyte in the determination of molecular weights by sephadex gel with specific reference to humic acids. Nature 198, 1161–1163.
    Parrish, J.M., Austin, E.W.,Stevens, D.K. (1996) Haloacetate-induced oxidative damage to DNA in the liver of male B6C3F1 mice. Toxicology, 110:103–111.
    Rook, J.J., (1974). Formation of haloforms during chlorination of natural waters. Water Treatment and Examination, 23, 234-243.
    Rook, J. J. (1977). Chlorination Reactions of Fulvic Acids in Natural-Waters. Environmental Science & Technology, 11(5): 478-482.
    Reckhow, D.A. and Singer, P.C. (1984) “The Removal of Organic Halide
    Precursors by Preozonztion and Alum Coagulation”, Jour.AWWA,
    82(4): 151-157.
    Reckhow, D.A. and Singer, P.C. (1985). Mechanisms of Organic Halide Formation During Fulvic Acid Chlorination and Implications With Respect to Preozonation. Water Chlorination: Environmental Impact and Health Effects, Vol.5, Ann Arbor Science Publishers Inc., Ann Arbor, MI. 1229
    Reckhow, D. A., Singer, P. C., & Malcolm, R. L. (1990). Chlorination of Humic Materials - by-Product Formation and Chemical Interpretations. Environmental Science & Technology, 24(11): 1655-1664.
    Reemtsma, T., These, A., Springer, A., & Linscheid, M. (2008). Differences in the molecular composition of fulvic acid size fractions detected by size-exclusion chromatography-on line Fourier transform ion cyclotron resonance (FTICR-) mass spectrometry. Water Research, 42(1-2): 63-72.
    Singer, P.C. (1994) “Control of Disinfection By-Product in Drinking Water”, Jour. of Environ. Engi., 120(4):727-744.
    Singer, P. C., Obolensky, A., & Greiner, A. (1995). DBPs in chlorinated North Carolina drinking waters. "Journal-American Water Works Association, "87(10), 83-92.
    Singer, P. C. (1999). Humic substances as precursors for potentially harmful disinfection by-products. Water Science and Technology, 40(9): 25-30
    Swietlik, J., A. Dabrowska, U. Raczyk-Stanislawiak, J. Nawrocki., (2004). Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Research, 38, 547-558.
    Sharp, E. L., Jarvis, P., Parsons, S. A., & Jefferson, B. (2006)a. Impact of fractional character on the coagulation of NOM. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 286(1-3): 104-111.
    Sharp, E. L., Jarvis, P., Parsons, S. A., & Jefferson, B. (2006)b. The impact of zeta potential on the physical properties of ferric-NOM flocs. Environmental Science & Technology, 40(12): 3934-3940.
    Sutton, R., & Sposito, G. (2005). Molecular structure in soil humic substances: the new view. Environmental Science & Technology, 39(23), 9009-9015.
    Świetlik, J., Dąbrowska, A., Raczyk-Stanisławiak, U., & Nawrocki, J. (2004). Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Research, 38(3), 547-558.
    Sillanpaa, M., A. Matilainen, E. T. Gjessing, T. Lahtinen, L. Hed and A. Bhatnagar (2011). "An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment." Chemosphere 83(11): 1431-1442.
    Symons, J. M., Krasner, S. W., Simms, L. A., & Sclimenti, M. (1993). Measurement of Thm and Precursor Concentrations Revisited - the Effect of Bromide Ion. Journal American Water Works Association, 85(1): 51-62.
    Steven.A.A., Moore, L.A. and Miltner, R.J. (1989) Formation and Control of Non-Trihalomethane Disinfection By-Products, Jour.AWWA, 81(8): 54-60.
    Sergio G. Salinas Rodriguez. (2011). Particulate and Organic Matter Fouling of Seawater Reverse Osmosis Systems.
    Thurman, E.M., (1985). Organic Geochemistry of Natural Waters. Dordrecht: M. Nijhoff and W. Junk, Publishers.
    Uyguner, C. S., Suphandag, S. A., Kerc, A., & Bekbolet, M. (2007). Evaluation of adsorption and coagulation characteristics of humic acids preceded by alternative advanced oxidation techniques. Desalination, 210(1), 183-193.
    USEPA (1993.) Guidance Manual for enhanced coagulation and enhanced precipitative softening, chapter 3 in D/DBP precursor removal processes.
    Westerhoff, P., W. Chen, J. A. Leenheer and K. Booksh (2003). "Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter." Environmental Science & Technology 37(24): 5701-5710.
    Wu, F. C., R. D. Evans and P. J. Dillon (2003). "Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection."Environmental Science & Technology 37(16): 3687-3693
    Wachter, J. K., & Andelman, J. B. (1984). Organohalide formation on chlorination of algal extracellular products. Environmental science & technology, 18(11), 811-817.
    Widrig, D. L., Gray, K. A., & McAuliffe, K. S. (1996). Removal of algal-derived organic material by preozonation and coagulation: Monitoring changes in organic quality by pyrolysis-GC-MS. Water Research, 30(11): 2621-2632.
    Yan, Y., H. Li and M. L. Myrick (2000). "Fluorescence fingerprint of waters: Excitation-emission matrix spectroscopy as a tracking tool." Applied Spectroscopy 54(10): 1539-1542.
    Yan, M. Q., Wang, D. S., Qu, J. H., Ni, J. R., & Chow, C. W. K. (2008). Enhanced coagulation for high alkalinity and micro-polluted water: The third way through coagulant optimization. Water Research, 42(8-9): 2278-2286.

    無法下載圖示 校內:2025-12-31公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE