簡易檢索 / 詳目顯示

研究生: 蕭清泰
Hsiao, Cheng-Tai
論文名稱: 釕-鋯和鎢-鋯合金薄膜閘極電極之製備與特性研究
Fabrication and characterization of RuxZr1-x and WxZr1-x alloyed thin films as gate electrodes
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 149
中文關鍵詞: 金屬閘極功函數偶極
外文關鍵詞: metal gate, work function, dipole
相關次數: 點閱:67下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以RuxZr1-x和WxZr1-x兩組合金薄膜作為金屬閘極,並以950℃熱氧化形成的SiO2當作介電材料,形成兩套MOS電容器。在金屬閘極部分,RuxZr1-x和WxZr1-x金屬薄膜分別以鋯靶材跟釕靶材共濺鍍,和以鋯靶材跟鎢靶材共濺鍍形成,兩者皆利用不同濺鍍功率調變薄膜中的金屬成分比例。研究內容主要是探討不同成分比例金屬閘極電極之材料性質與電性表現,藉以評估其做為閘極電極層之可行性。
    實驗中使用電子微探儀分析RuxZr1-x和WxZr1-x合金薄膜成分比例;利用低掠角X光繞射儀對RuxZr1-x和WxZr1-x合金薄膜進行晶體結構分析;使用穿透式電子顯微鏡來觀察RuxZr1-x/SiO2/Si之MOS結構電容器之橫截面影像,並且鑑定950℃生長之SiO2厚度以及RuxZr1-x金屬薄膜結晶性;利用X光光電子能譜儀對初鍍不同成分比例之RuxZr1-x/SiO2/Si之MOS結構電容器進行縱深分析,觀察由薄膜表面至RuxZr1-x/SiO2界面的化學鍵結變化;使用附加於原子力顯微鏡上之表面電位顯微鏡來獲得試片表面功函數;MOS結構電容器之電容-電壓(C-V)曲線乃使用電感電容電阻計量儀(Agilent 4284)進行量測,並萃取出其有效功函數。
    低掠角X光繞射儀分析結果顯示,初鍍RuxZr1-x和WxZr1-x只有Ru> 90 at%和W > 80 at%的試片才會有明顯結晶產生,其餘試片呈現非晶質結構。RuxZr1-x/SiO2/Si之MOS結構在穿透式電子顯微鏡分析下,並沒有看到明確中介層產生於界面。然而,X光光電子能譜儀分析結果顯示,Zr成分≧23at%的試片容易在表面產生ZrOx,而富含Zr成分(≧67 at%)的試片也會在RuxZr1-x/SiO2 、WxZr1-x/SiO2界面產生界面反應。
    電性量測顯示,初鍍的純Zr所量得有效功函數約為4.0 eV,隨著Ru含量的添加,Ru0.20Zr0.80、Ru0.33Zr0.67增加到4.37、4.46eV,但隨後Ru0.46Zr0.54的有效功函數卻下降到4.15eV。當Ru含量再添加越來越多時,RuxZr1-x金屬閘極功函數也有越來越大的趨勢。初鍍純Ru所量測到的有效功函數大約為5.16 eV。對於WxZr1-x金屬閘極而言,隨著W含量添加,W0.22Zr0.78有效功函數增加到4.5eV,但隨後W0.52Zr0.48卻下降到4.22eV。當W含量再添加越來越多時,WxZr1-x金屬閘極有效功函數也會越來越大,W0.97Zr0.03可增加到4.63 eV。但對於純W金屬閘極而言,功函數卻下降到4.49 eV。
    在表面電位量測分析中,對於RuxZr1-x和WxZr1-x金屬閘極系統,當Ru或W含量小於80 at%時,所量得表面功函數並不會隨成分改變而有明顯變化,其功函數值大約落在4.3 ~ 4.5eV。對於C-V磁滯曲線掃描分析,不管金屬閘極電極是RuxZr1-x或WxZr1-x ,其氧化層捕獲電荷數值皆約為同一個級數,1×1011 ~ 9×1011 (#/cm2),且其電荷捕捉型態也都為負電荷。

    In this study, metal gates of RuxZr1-x and WxZr1-x alloyed films are deposited on n-type Si with thermally grown SiO2 to form two types of metal-oxide-semiconductor (MOS) capacitors. For the metal gates, both RuxZr1-x and WxZr1-x thin films were fabricated by co-sputtering ruthenium and zirconium targets, and by co-sputtering tungsten and zirconium targets, respectively. Compositions of RuxZr1-x and WxZr1-x alloyed films were controlled by adjusting the sputtering power. Material and electrical characteristics for alloyed metal gates of different compositions are investigated to assess their feasibility as metal gate materials.
    Compositions of RuxZr1-x and WxZr1-x thin films are examined by electron probe X-ray microanalyzer (EPMA). Crystal structures of RuxZr1-x and WxZr1-x thin films are identified by grazing incident angle x-ray diffractometer (GIAXRD). Transmission electron microscopy (TEM) is employed to examine the cross- sectional microstructure of RuxZr1-x/SiO2/Si MOS capacitors, crystal quality of RuxZr1-x alloyed films, and to identify the thickness of thermally grown SiO2. X-ray photoelectron spectroscopy (XPS) depth profiling spectra are applied for chemical bonding analysis of RuxZr1-x/SiO2/Si structures. Surface potential microscopy is used to measure the work function on sample surface. The C-V curves of MOS structure capacitors are measured by LCR meter (Agilent 4284A) to extract the effective work function of RuxZr1-x and WxZr1-x metal gates.
    According to the X-ray diffraction patterns, only the RuxZr1-x films of Ru>90 at% and WxZr1-x films of W>80 at% exhibit distinct diffraction peaks. All others are amorphous as deposited. TEM micrographs indicate that there is no obvious interlayer observed at the interface between RuxZr1-x and SiO2. However, XPS depth profiling spectra reveal that the samples with composition of ≧23 at% Zr oxidize to form ZrOx on the surface and the Zr-rich RuxZr1-x (≧67 at% Zr) react with SiO2 at the interface between RuxZr1-x and SiO2.
    For RuxZr1-x metal gate electrodes, the effective work function of the as-deposited pure Zr is 4.0 eV, and then it increases to 4.37 and 4.46 eV for Ru0.20Zr0.80 and Ru0.33Zr0.67 with increasing Ru content. But the work function of Ru0.46Zr0.54 decreasing to 4.15 eV. Further addition of Ru will again increase the work function of RuxZr1-x and the effective work function is about 5.16 eV for pure Ru. For WxZr1-x metal gates, the work function is 4.5 eV for W0.22Zr0.78 and then it reduces to 4.22 eV for W0.52Zr0.78. The more W content leads to the higher the work function. The work function for W0.97Zr0.03 is 4.63 eV but it decreases to 4.49 eV for pure W.
    In the analysis of surface potential microscopy, the surface work function has no remarkable change with composition for RuxZr1-x and WxZr1-x alloyed films when Ru or W content is smaller than 80 at%. The value is about 4.3~4.5 eV. The oxide trapped charge density extracted from C-V hysteresis curves is about 1×1011 ~ 9×1011 (#/cm2) and the trapped charges are negative for both RuxZr1-x and WxZr1-x metal gates.

    第1章 緒論 1 1.1 背景 1 1.2 研究目的 3 第2章 理論基礎 6 2.1 金-氧-半場效電晶體(MOSFET) 6 2.2 金屬閘極電極取代多晶矽閘極電極 7 2.3 金屬閘極材料 12 2.4 偶極(Dipole) 20 2.5 釕、鎢及鋯之基本性質 25 2.6 等效功函數之求法 27 第3章 實驗方法與步驟 30 3.1 實驗材料 30 3.1.1 濺鍍靶材 (Sputtering target) 30 3.1.2 基材(Substrates) 30 3.1.3 濺鍍使用氣氛(Gas Ambient) 30 3.1.4 實驗相關藥品與耗材 30 3.2 實驗設備 32 3.2.1 薄膜濺鍍系統(Sputtering System) 32 3.2.1 高溫氧化爐 34 3.3 實驗流程 36 3.3.1 基材清洗 (Substrates Clean) 37 3.3.2 MOS電容器製備 39 3.4 分析儀器 40 3.4.1 橢圓偏光儀(Ellipsometry) 40 3.4.2 四點探針儀 (four-point-probe) 41 3.4.3 表面粗糙儀(Stylus profilometry) 42 3.4.4 低掠角X光繞射儀(GIAXRD) 43 3.4.5 X光光電子能譜儀(XPS) 44 3.4.6 穿透式電子顯微鏡(TEM) 46 3.4.7 電子微探儀(EPMA) 47 3.4.8 電感電容電阻計量儀(Agilent 4284A) 48 3.4.9 表面電位儀(KPM) 49 第4章 實驗結果與討論 52 4.1 RuxZr1-x和WxZr1-x合金薄膜材料特性分析 52 4.1.1 試片命名及合金薄膜成份分析 52 4.1.2 RuxZr1-x和WxZr1-x薄膜晶體結構分析 55 4.1.3 RuxZr1-x和WxZr1-x薄膜電阻率分析 60 4.2 MOS電容器疊層結構分析 62 4.2.1 穿透式電子顯微鏡分析 62 4.2.2 XPS縱深分析 73 4.3 MOS電容器電性量測分析 110 4.3.1 等效功函數之量測 113 4.3.2 遲滯曲線量測 126 4.3.3 表面電位量測 133 4.4 真空退火分析 137 第5章 結論 140 第6章 參考文獻 141

    1 R. M. C. de Almeida and I. J. R. Baumvol, "Reaction-diffusion in high-k dielectrics on Si", Surface Science Reports. 49, 1 (2003)
    2 E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H. Okorn-Schmidt, C. D’Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L.-A. Ragnarsson, P. Ronsheim, K. Rim, R. J. Fleming, A. Mocuta and A. Ajmera, "Ultrathin high-K gate stacks for advanced CMOS devices", Tech. Dig. Int. Electron Devices Meet., 451 (2001)
    3 B. Yu, H. Wang, C. Riccobene, Q. Xiang and M.-R. Lin, "Limits of Gate-Oxide scaling in Nano-transistors", IEEE Symposium on VLSI Tech. Dig., 90 (2000)
    4 C. Leveugle, P. K. Hurley, A. Mathewson, S. Moran, E. Sheehan, A. Kalnitsky, A. Lepert, I. Beinglass and M. Venkatesan, "Impact of the polysilicon doping level on the properties of the silicon/oxide interface in polysilicon/oxide/silicon capacitor structures", Microelectron. Eng. 36, 215 (1997)
    5 H. B. Michaelson, "the WF of the elements and its periodicity", J. Appl. Phys. 48, 4729 (1977)
    6 T. B. Massalski, Binary Phase Diagram, 2nd ed., ASM International, Ohio, 1990.
    7 D. A. Neamen ed. Semiconductor Physics and Devices: Basic principles, McGraw-Hill, 2003.
    8 Z. J. Ma, J. C. Chen, Z. H. Liu, J. T. Krick, Y. C. Cheng, C. Hu and P. K. Ko, "Suppression of boron penetration in p+ polysilicon gate p-MOSFET’s using low-temperature gate-oxide N2O anneal", IEEE Electron Device Lett. 15, 109 (1994)
    9 C. T. Liu, Y. Ma, H. Luftman and S. J. Hillenius, "Preventing boron penetration through 25Å gate oxides with nitrogen implant in the Si substrates", IEEE Electron Device Lett. 18, 212 (1997)
    10 D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt and G. Timp, "The electronic structure at the atomic scale of ultrathin gate oxides", Nature. 399, 758 (1999)
    11 C. Hobbs, L. Fonseca, V. Dhandapani, S. Samavedam, B. Taylor, J. Grant, L. Dip, D. Triyoso, R. Hegde, D. Gilmer, R. Garcia, D. Roan, L. Lovejoy, R. Rai, L. Hebert, H. Tseng, B. White and P. Tobin, "Fermi level pinning at the poly-Si/metal oxide interface", IEEE Symposium on VLSI Tech. Dig.,, 9 (2003)
    12 Y.-C. Yeo, P. Ranade, T.-J. King and C. Hu, "Effects of high-k gate dielectric materials on metal and silicon gate workfunctions", IEEE Electron Device Lett. 23, 342 (2002)
    13 S. Zafar, C. Cabral, R. A. Jr. and A. Callegari, "A method for measuring barrier heights, metal work functions and fixed charge densities in metal/SiO2/Si capacitors", Appl. Phys. Lett. 80, 4858 (2002)
    14 J. Pan, C. Woo, C.-Y. Yang, U. Bhandary, S. Guggilla, N. Krishna, H. Chung, A. Hui, B.Yu, Q. Xiang and M.-R. Lin, "Replacement metal-gate NMOSFETs with ALD TaN/EP-Cu, PVD Ta, and PVD TaN electrode", IEEE Electron Device Lett. 24, 304 (2003)
    15 V. Misra, G. P. Heuss and H. Zhong, "Use of metal–oxide–semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO2 and ZrO2", Appl. Phys. Lett. 78, 4166 (2001)
    16 I. Polishchuk, P. Ranade, T.-J. King and C. Hu, "Dual work function metal gate CMOS technology using metal interdiffusion", IEEE Electron Device Lett. 22, 444 (2001)
    17 D. Gu, S. K. Dey and P. Majhi, "Effective work function of Pt, Pd, and Re on atomic layer deposited HfO2", Appl. Phys. Lett. 89, 082907 (2006)
    18 J. Pan, D. Canaperi, R. Jammy, M. Steen, J. Pellerin and M.-R. Lin, "CVD rhenium and PVD tantalum gate MOSFETs fabricated with a replacement technique", IEEE Electron Device Lett. 25, 775 (2004)
    19 K. J. Park, J. M. Doub, T. Gougousi and G. N. Parsons, "Microcontact patterning of ruthenium gate electrodes by selective area atomic layer deposition", Appl. Phys. Lett. 86, 051903 (2005)
    20 W. P. Bai, S. H. Bae, H. C. Wen, S. Mathew, L. K. Bera, N. Balasubramanian, N.Yamada, M. F. Li and D.-L. Kwong, "Three-layer laminated metal gate electrodes with tunable work functions for CMOS aApplications", IEEE Electron Device Lett. 26, 231 (2005)
    21 C.-S. Lai, S.-K. Peng, T.-M. Pan, J.-C. Wang and K.-M. Fan, "Work function adjustment by nitrogen incorporation in HfNx gate electrode with post metal annealing", Electrochem. Solid-State Lett. 9, G239 (2006)
    22 N. V. Hoornick, H. D. Witte, T. Witters, C. Zhao, T. Conard, H. Huotari, J. Swerts, T.Schram, J. W. Maes, S. De Gendt and M. Heyns, "Evaluation of atomic layer deposited NbN and NbSiN as metal gate materials", J. Electrochem. Soc. 153, G437 (2006)
    23 K. Choi, H. N. Alshareef, H. C. Wen, H. Harris, H. Luan, Y. Senzaki, P. Lysaght, P.Majhi and B. H. Lee, "Effective work function modification of atomic-layer-deposited-TaN film by capping layer", Appl. Phys. Lett. 89, 032113 (2006)
    24 B.-Y. Tsui, C.-F. Huang and C.-H. Lu, "Investigation of molybdenum nitride gate on SiO2 and HfO2 for MOSFET application", J. Electrochem. Soc. 153, G197 (2006)
    25 B. Claflin, M. Binger and G. Lucovsky, "Interface studies of tungsten nitride and titanium nitride composite metal gate electrodes with thin dielectric layers", J. Vac. Sci. Technol. A 16, 1757 (1998)
    26 P.-C. Jiang, Y.-S. Lai and J. S. Chen, "Dependence of crystal structure and workfunction of WNx films on the nitrogen content", Appl. Phys. Lett. 89, 122107 (2006)
    27 C. S. Park, B. J. Cho and D.-L. Kwong, "Thermally stable fully silicided Hf-silicide metal-gate electrode", IEEE Electron Device Lett. 25, 372 (2004)
    28 H. Luan, H. N. Alshareef, P. S. Lysaght, H. R. Harris, H. C. Wen, K. Choi, Y. Senzaki, P. Majhi and B.-H. Lee, "Evaluation of tantalum silicon alloy systems as gate electrodes", Appl. Phys. Lett. 87, 212110 (2005)
    29 T.-L. Li, W.-L. Ho, H.-B. Chen, H. C.-H. Wang, C.-Y. Chang and C. Hu, "Novel dual-metal gate technology using Mo-MoSix combination", IEEE Trans. on Electron Devices 53, 1420 (2006)
    30 K. Nakajima, H. Nakazawa, K. Sekine, K. Matsuo, T. Saito, T. Katata, K. Suguro and Y. Tsunashima, "Highly reliable CVD-WSi metal gate electrode for nMOSFETs", IEEE Trans. on Electron Devices. 52, 2215 (2005)
    31 M. Qin, V. M. C. Poon and S. C. H. Ho, "Investigation of polycrystalline nickel silicide films as a gate material", J. Electrochem. Soc. 148, G271 (2001)
    32 B.-Y. Tsui and C.-F. Huang, "Wide range work function modulation of binary alloys for MOSFET application", IEEE Electron Device Lett. 24, 153 (2003)
    33 B. Chen, R. Jha, H. Lazar, N. Biswas, J. Lee, B. Lee, L. Wielunski, E. Garfunkel and V. Misra, "Influence of oxygen diffusion through capping layers of low work function metal gate electrodes", IEEE Electron Device Lett. 27, 228 (2006)
    34 B. Chen, N. Biswas and V. Misra, "Electrical and physical analysis of MoTa alloy for gate electrode applications", J. Electrochem. Soc. 153, G417 (2006)
    35 C. Bei, R. Jha and V. Misra, "Work Function Tuning Via Interface Dipole by Ultrathin Reaction Layers Using AlTa and AlTaN Alloys", Electron Device Letters, IEEE. 27, 731 (2006)
    36 T. Matsukawa, C. Yasumuro, H. Yamauchi, M. Masahara, E. Suzuki and S. Kanemaru, "Work function uniformity of Al–Ni alloys obtained by scanning Maxwell-stress microscopy as an effective tool for evaluating metal transistor gates", Appl. Phys. Lett. 86, 094104 (2005)
    37 C.-J. Choi, M.-G. Jang, Y.-Y. Kim, M.-S. Jeon, B.-C. Park, S.-J. Lee, R.-J. Jung, H.-d.Yang, M. Chang and H.-s. Hwang, "Effects of High-Pressure Hydrogen Postannealing on the Electrical and Structural Properties of the Pt-Er Alloy Metal Gate on HfO2 Film", Electrochem. Solid-State Lett. 9, G228 (2006)
    38 R. M. Todi, A. P. Warren, K. B. Sundaram, K. Barmak and K. R. Coffey, "Characterization of Pt–Ru binary alloy thin films for work function tuning," IEEE Electron Device Lett. 27, 542 (2006)
    39 B. Chen, Y. Suh, J. Lee, J. Gurganus, V. Misra and C. Cabral, "Physical and electrical analysis of RuxYy alloys for gate electrode applications", Appl. Phys. Lett. 86, 053502 (2005)
    40 T. Nabatame, Y. Nunoshige, M. Kadoshima, H. Takaba, K. Segawa, S. Kimura, H. Satake, H. Ota, T. Ohishi and A. Toriumi, "Changes in effective work function of HfxRu1-x alloy gate electrode", Microelectron. Eng. 85, 1524 (2008)
    41 A. E. -J. Lim, W. S. Hwang, X. P. Wang, D. M. Y. Lai, G. S. Samudra, D. -L. Kwong and Y. -C. Yeo, "Metal-gate work function modulation using hafnium alloys obtained by the interdiffusion of thin metallic layers", J. Electrochem. Soc. 154, H309 (2007)
    42 T. L. Li, C. H. Hu, W. L. Ho, H. C. H. Wang and C. Y. Chang, "Continuous and precise work function adjustment for integratable dual metal gate CMOS technology using Hf-Mo binary alloys", IEEE Trans. Electron Devices. 52, 1172 (2005)
    43 K.-S. Chang, M. L. Green, J. Suehle, E. M. Vogel, H. Xiong, J. Hattrick-Simpers, I.Takeuchi, O. Famodu, K. Ohmori, P. Ahmet, T. Chikyow, P. Majhi, B.-H. Lee and M. Gardner, "Combinatorial study of Ni-Ti-Pt ternary metal gate electrodes on HfO2 for the advanced gate stack", Appl. Phys. Lett. 89, 142108 (2006)
    44 C. D. Gelatt and Ehrenrei.H, "CHARGE-TRANSFER IN ALLOYS - AGAU", Phys. Rev. B. 10, 398 (1974)
    45 C. Kittel, Introduction to Solid State Physics, New York:Wiley, 1996.
    46 H. N. Alshareef, M. Quevedo-Lopez, H. C. Wen, C. Huffman, M. El-Bouanani and B. E. Gnade, "Impact of carbon incorporation on the effective work function of WN and TaN Metal Gate Electrodes", Electrochemical and Solid-State Letters. 11, H182 (2008)
    47 C. Adelmann, J. Meersschaut, L.-Å. Ragnarsson, T. Conard, A. Franquet, N. Sengoku, Y. Okuno, P. Favia, H. Bender, C. Zhao, B. J. O’Sullivan, A. Rothschild, T. Schram, J. A. Kittl, S. Van Elshocht, S. De Gendt, P. Lehnen, O. Boissière and C. Lohe, "Thermally stable high effective work function TaCN thin films for metal gate electrode applications", JOURNAL OF APPLIED PHYSICS. 105, 053516 (2009)
    48 Ching-Huang Lu, Gloria M. T. Wong, Ryan Birringer, Reinhold Dauskardt, Michael D. Deal, Bruce M. Clemens and Y. Nishi, "Bilayer metal gate electrodes with tunable work function: Mechanism and proposed model", JOURNAL OF APPLIED PHYSICS. 107, 063710 (2010)
    49 Myung Soo Lee, Chee-Hong An, Kyung Park and H. Kimz, "Simultaneous control of the work function and interfacial oxide thickness using Ni/Hf stacked electrode on HfO2", Electrochemical and Solid-State Letters. 12, H120 (2009)
    50 R. Singanamalla, H. Y. Yu, B. Van Daele, S. Kubicek and K. De Meyer, "Effective Work-Function Modulation by Aluminum-Ion Implantation for Metal-Gate Technology (Poly-Si/TiN/SiO2)", IEEE Electron Devices Lett. 28, 12 (2007)
    51 K. Kita and A. Toriumi, "Origin of electric dipoles formed at high-k/SiO2 interface", Appl. Phys. Lett. 94, 132902 (2009)
    52 Y. Abe, N. Miyata and Y. Shiraki, "Dipole formation at direct-contact HfO2/Si interface", Appl. Phys. Lett. 90, 17 (2007)
    53 P. D. Kirsch, P. Sivasubramani, J. Huang, C. D. Young, M. A. Quevedo-Lopez, H. C. Wen, H. Alshareef, K. Choi, C. S. Park, K. Freeman, M. M. Hussain, G. Bersuker, H. R. Harris, P. Majhi, R. Choi, P. Lysaght, B. H. Lee, H.-H. Tseng, R. Jammy, T. S. Böscke, D. J. Lichtenwalner, J. S. Jur and A. I. Kingon, "Dipole model explaining high-k/metal gate field effect transistor threshold voltage tuning", Appl. Phys. Lett. 92, 092901 (2008)
    54 Y. Tsuchiya, M. Yoshiki, K. Sekine, T. Saito, K. Nakajima, T. Aoyama, J. Koga, A. Nishiyama, M. Koyama, M. Ogawa and S. Zaima, "Physical origin of suppressed effective work function modulation at boron segregated NiSi/SiON interface", J. Appl. Phys. 103, 124503 (2008)
    55 Y. Tsuchiya, M. Yoshiki, A. Kinoshita, M. Koyama, J. Koga, M. Ogawa and S. Zaima, "Physical mechanism of effective work function modulation caused by impurity segregation at Ni silicide/SiO2 interfaces", J. Appl. Phys. 102, 104504 (2007)
    56 J. Emsley, The Elements, Oxford University Press, 1989.
    57 A. Katagiri, M. Suzuki and Z. -I. Takehara, "Electrodeposition of tungsten in ZnBr2-NaBr and ZnCl2-NaCl melts", J. Electrochem. Soc. 138, 767 (1991)
    58 P. Petroff, T. T. Sheng, A. K. Sinha, G. A. Rozgonyi and F. B. Alexander, "Microstructure, growth, resistivity, and stresses in thin tungsten films deposited by RF sputtering", J. Appl. Phys. 44, 2545 (1973)
    59 http://som.web.cmu.edu/structures/S032-Cu2Mg.html.
    60 E. H. Micollian and J. R. Brews, "MOS (Metal Oxide Semiconductor) Physics and Technology", (Wiley, New Jersey ) (2003)
    61 D. K. Schroder, Semiconductor material and device characterization, 2006.
    62 J. Chen, X. P. Wang, M. -F. Li, S. J. Lee, M. B. Yu, C. Shen and Y. -C. Yeo, "NMOS compatible work function of TaN metal gate with Erbium-oxide-doped Hafnium oxide gate dielectric", IEEE Electron Device Lett. 28, 862 (2007)
    63 D.Kasai, Innova Surface Potential Microscopy -Support Note 013-445-000, Rev. 01A, Veeco, 2008.
    64 I. Barin, Thermochemical data of pure substances, 3rd ed, VCH, New York, 1995.
    65 R. W. M. Kwok, XPSPEAK 4.0, Department of chemistry, The Chinese University of Hong Kong.
    66 J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics Inc., Minnesota, 1995.
    67 H. Shimizu, S. Konagai, M. Ikeda and T. Nishide, "Characterization of Sol-Gel Derived and Crystallized ZrO2 Thin Films", Jpn. J. Appl. Phys. 48, 6 (2009)
    68 M. T. Yu, S. W. Jeong, H. J. Lee and Y. Roh, "Characteristics of high-k gate oxide prepared by oxidation of multi-layered Hf/Zr/Hf/Zr/Hf metal films", Thin Solid Films. 516, 1563 (2008)
    69 M. J. Guittet, J. P. Crocombette and M. Gautier-Soyer, "Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects", Phys. Rev. B. 63, 125117 (2001)
    70 M. Tapajna, K. Husekova, D. Machajdık, A.P. Kobzev, T. Schram, R. Luptak, L. Harmatha and K. Fro¨hlich, "Electrical properties and thermal stability of MOCVD grown Ru gate electrodes for advanced CMOS technology", Microelectron. Eng. 83, 2412 (2006)
    71 J. H. Huang and J. S. Chen, "Material characteristics and electrical property of reactively sputtered RuO2 thin films", Thin Solid Films. 382, 139 (2001)
    72 C. C. Fulton, G. Lucovsky and R. J. Nemanich, "Electronic properties of the Zr-ZrO2-SiO2-Si(100) gate stack structure", Journal of Applied Physics. 99, 10 (2006)
    73 Y. Wang, F. Cao, Y.-t. Liu and L. Shao, "Effect of Si Content on the Barrier Property of Zr-Si as a Diffusion Barrier for Cu Metallization", Journal of The Electrochemical Society. 155, H951 (2008)
    74 M. Tapajna, A. Rosova, E. DobroCka, V. Strbik, S. Gazi, K. Frohlich, P. Benko, L. Harmatha, C. Manke and P. K. Baumann, "Work function thermal stability of RuO2-rich Ru--Si--O p-channel metal-oxide-semiconductor field-effect transistor gate electrodes", J. Appl. Phys. 103, 073702 (2008)
    75 S. Zafar, A. Callegari, E. Gusev and M. V. Fischetti, "Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks", J. Appl. Phys. 93, 9298 (2003)
    76 K. Onishi, R. Choi, C. S. Kang, H. -J. Cho, Y. H. Kim, R. E. Nieh, J. Han, S. A.Krishnan, M. S. Akbar and J. C. Lee, "Bias-temperature instabilities of polysilicon gate HfO2 MOSFETs", IEEE Trans. Electron Devices. 50, 1517 (2003)
    77 A. R. Stivers and C. T.Sah, " A study of oxide traps and interface states of the silicon-silicon dioxide interface", J. Appl. Phys. 51, 6292 (1980)
    78 S. M. Sze, Physics of semiconductor devices, 2nd ed., John Wiley & Sons, New York, 1985.
    79 T. Nabatame, K Segawa, M. Kadoshima, H. Takaba, K. Iwamoto, S. Kimura, Y. Nunoshige, H. Satake, T. Ohishi and A. Toriumi, "The effect of oxygen in Ru gate electrode on effective work function of Ru/HfO2 stack structure", Materials Science in Semiconductor Processing. 9 (2006)

    下載圖示 校內:2013-08-05公開
    校外:2013-08-05公開
    QR CODE