簡易檢索 / 詳目顯示

研究生: 黃詩絜
Huang, Shih-Chieh
論文名稱: 研究syndecan與凝血酶調節素之相關性
Study on the relationship between syndecan and thrombomodulin
指導教授: 吳華林
Wu, Hua-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 65
中文關鍵詞: 凝血酶調節素
外文關鍵詞: thrombomodulin, syndecan
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Syndecan(SDC)是細胞表面上的一種蛋白多醣,含有大量的硫酸乙醯肝素(heparan sulfate),SDC主要的功能是作為輔助受器,利用硫酸乙醯肝素和許多分子結合並協助這些分子和受器結合,像是一些生長因子、細胞外基質或是其他膜蛋白。目前在脊椎動物中發現四種SDC,分別為SDC-1到SDC-4。凝血酶調節素(thrombomodulin, TM)最早在血管內皮細胞被發現,是為人所熟知的抗凝血因子。在先前的研究中發現TM的類上皮生長因子區域(EGF-like domain, TMD23)具有促進血管新生功能;另外,也發現TM可以調節細胞的黏著。然而,TMD23以及TM是如何作用的還未充分了解。本實驗用穩定表現SDC的細胞來探討TMD23的作用是否利用SDC作為輔助受器。我們發現TMD23可以和肝素結合,並且在TMD23刺激之下,表現SDC的細胞生長速率比控制組快,其中又以穩定表現SDC-4的細胞變化最明顯;而利用共同免疫沉澱方法證實TMD23可以和SDC-4結合但不能和SDC-1結合。另一方面,由於TM可以當作是細胞黏著因子,我們也探討在細胞黏著以及移行時,SDC與TM之間的關係。同時表現TM及SDC在A2058細胞中,發現在細胞黏著於纖維黏蛋白(fibronectin)時,TM和SDC會共同表現在細胞的邊緣;而在HaCaT細胞移行時,TM則會和SDC-1結合。我們的結果顯示在細胞上SDC-4可作為TMD23的輔助受器,此外,在細胞進行黏著或移行時,細胞膜上的TM也會和膜上的SDC在一起作用,可能與調控細胞與細胞外基質的結合有關。

    Syndecans (SDCs) are a family of cell surface heparan sulfate proteoglycans. Heparan sulfate side chains of syndecans bind to extracellular matrix and heparin-binding growth factors to present them to their receptors. Syndecans can also bind to other molecules on the cell surface such as integrins and selectins. Thus, syndecans are able to regulate cell spreading, adhesion, migration and proliferation because of these interactions. There are four syndecans that have been characterized in vertebrates: SDC-1, -2, -3, and -4. Thrombomodulin (TM), an anticoagulant membrane glycoprotein, is present mainly in endothelial cells, lung epithelial cells, and keratinocytes. In our previous study, we found that TM could mediate cell adhesion, and recombinant soluble human TM EGF-like domain protein (TMD23) could promote cell proliferation, migration, and angiogenesis. However, the mechanisms of TM and TMD23 functions still remained to be investigated. Since SDCs serve as co-receptors for various growth factors, we hypothesized that SDCs may play a role in modulating the function of TMD23 as a growth factor. On the other hand, since TM is an adhesion molecule, we investigated the relationship of SDCs and TM in cell spreading and migration. In the present study, we found that TMD23 could bind to immobilized heparin. HEK293 cells over-expressed SDCs proliferated more rapidly then control cells after TMD23 stimulation. Besides, we demonstrated that SDC-4 rather than SDC-1 co-immunoprecipitated with soluble TMD23. In A2058 cells which were co-transfection of full-length TM and SDCs cDNA, we also showed that TM co-localized with SDCs during cell spreading. The association of TM with SDC-1 was found in migrating HaCaT cells. These results suggested that TMD23 may use SDC-4 as its co-receptor through binding to the heparan sulfate side chains of SDC-4. During cell spreading and migration, TM in cooperation with SDCs regulated the interaction of cell and extracellular matrix.

    Abstract in Chinese 1 Abstract in English 2 Abbreviations 6 Introduction 7 Instruments 13 Reagents 15 Materials and Methods 18 Results 36 Discussion 40 References 43 Figures 49 Table 60 Appendixes 61 Resum 63

    1. Carey DJ. Syndecans: multifunctional cell-surface coreceptors. Biochem J. 1997; 327: 1-16.
    2. Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992; 8: 365-93.
    3. Saunders, S., Jalkanen, M., O’Farrel, S. and Bernfield, M. Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol. 1989; 108, 1547-65.
    4. Marynen, P., Zhang, J., Cassiman, J.-J., Van der Berghe, H. and David, G. Partial primary structure of the 48- and 90-kilodalton core proteins of cell surface-associated heparan proteoglycans of lung fibroblasts. J Biol Chem. 1989; 264, 7017-24.
    5. Carey, D. J., Evans, D. M., Stahl, R. C., Asundi, V. K., Conner, K. J., et al. Molecular cloning and characterization of N-syndecan, a novel transmembrane heparan sulfate proteoglycan. J Cell Biol. 1992; 117, 191-2.
    6. Gould, S. E., Upholt, W. B. and Kosher, R. A. Syndecan 3: A member of the syndecan family of membrane-intercalated proteoglycans that is expressed in high amounts at the onset of chicken limb cartilage differentiation. Proc Natl Acad Sci USA. 1992; 89, 3271-5.
    7. David, G., van der Schueren, B., Marynen, P., Cassiman, J. J. and van den Berghe, H. Molecular cloning of amphiglycan, a novel integral membrane heparan sulfate proteoglycan expressed by epithelial and fibroblastic cells. J Cell Biol. 1992; 118, 961-9.
    8. Kojima, T., Shworak, N. W. and Rosenberg, R. D. Molecular cloning and expression of two distinct cDNA-encoding heparan sulfate proteoglycan core proteins from a rat endothelial cell line. J Biol Chem. 1992; 267, 4870-7.
    9. Zhang L, David G, Esko JD. Repetitive Ser-Gly sequences enhance heparan sulfate assembly in proteoglycans. J Biol Chem. 1995; 270: 27127-35.
    10. Rapraeger A, Jalkanen M, Endo E, Koda J, Bernfield M. The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J Biol Chem. 1985; 260: 11046-52.
    11. Shworak NW, Shirakawa M, Mulligan RC, Rosenberg RD. Characterization of ryudocan glycosaminoglycan acceptor sites. J Biol Chem. 1994; 269:21204-14.
    12. Chen L, Klass C, Woods A. Syndecan-2 regulates transforming growth factor-beta signaling. J Biol Chem. 2004; 279: 15715-8.
    13. Horowitz A, Tkachenko E, Simons M. Fibroblast growth factor-specific modulation of cellular response by syndecan-4. J Cell Biol. 2002; 157:715-25.
    14. Sanderson RD, Turnbull JE, Gallagher JT, Lander AD. Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior. J Biol Chem. 1994; 269: 13100-6.
    15. Kato M, Wang H, Bernfield M, Gallagher JT, Turnbull JE. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J Biol Chem. 1994; 269: 18881-90.
    16. Kim CW, Goldberger OA, Gallo RL, Bernfield M. Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell. 1994; 5: 797-805.
    17. Maeda T, Desouky J, Friedl A. Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene. 2006; 25: 1408-12.
    18. Fears CY, Gladson CL, Woods A. Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem. 2006; 281: 14533-6.
    19. Baba F, Swartz K, van Buren R, Eickhoff J, Zhang Y, Wolberg W, Friedl A. Syndecan-1 and syndecan-4 are overexpressed in an estrogen receptor-negative, highly proliferative breast carcinoma subtype. Breast Cancer Res Treat. 2006; 98: 91-8.
    20. Inki P, Joensuu H, Grnman R, Klemi P, Jalkanen M. Association between syndecan-1 expression and clinical outcome in squamous cell carcinoma of the head and neck. Br J Cancer. 1994; 70: 319-23.
    21. Chu CL, Goerges AL, Nugent MA. Identification of common and specific growth factor binding sites in heparan sulfate proteoglycans. Biochemistry. 2005; 44: 12203-13.
    22. Ashikari S, Habuchi H, Kimata K. Characterization of heparan sulfate oligosaccharides that bind to hepatocyte growth factor. J Biol Chem. 1995; 270: 29586-93.
    23. Johnson GR, Wong L. Heparan sulfate is essential to amphiregulin-induced mitogenic signaling by the epidermal growth factor receptor. J Biol Chem. 1994; 269: 27149-54.
    24. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem. 1992; 267: 6093-8.
    25. Feyzi E, Lustig F, Fager G, Spillmann D, Lindahl U, Salmivirta M. Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet-derived growth factor A chain. J Biol Chem. 1997; 272: 5518-24.
    26. Rapraeger AC, Krufca A, Olwin BB. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991; 252: 1705-8.
    27. Chakravarti R, Sapountzi V, Adams JC. Functional role of syndecan-1 cytoplasmic V region in lamellipodial spreading, actin bundling, and cell migration. Mol Biol Cell. 2005; 16: 3678-91.
    28. Tkachenko E, Elfenbein A, Tirziu D, Simons M. Syndecan-4 clustering induces cell migration in a PDZ-dependent manner. Circ Res. 2006; 98: 1398-404.
    29. Beauvais DM, Rapraeger AC. Syndecan-1-mediated cell spreading requires signaling by αvβ3 integrins in human breast carcinoma cells. Exp Cell Res. 2003; 286: 219-32.
    30. Beauvais DM, Burbach BJ, Rapraeger AC. The syndecan-1 ectodomain regulates αvβ3 integrin activity in human mammary carcinoma cells. J Cell Biol. 2004; 167: 171-81.
    31. Saoncella S, Echtermeyer F, Denhez F, Nowlen JK, Mosher DF, et al. Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc Natl Acad Sci USA. 1999; 96: 2805-10.
    32. Woods A, Couchman JR. Syndecan-4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell. 1994; 5: 183-92.
    33. Klass CM, Couchman JR, Woods A. Control of extracellular matrix assembly by syndecan-2 proteoglycan. J Cell Sci. 2000; 113: 493-506.
    34. Reyes AA, Akeson R, Brezina L, Cole GJ. Structural requirements for neural cell adhesion molecule-heparin interaction. Cell Regul. 1990; 1: 567-76.
    35. Luo J, Kato M, Wang H, Bernfield M, Bischoff J. Heparan sulfate and chondroitin sulfate proteoglycans inhibit E-selectin binding to endothelial cells. J Cell Biochem. 2001; 80: 522-31.
    36. Diamond MS, Alon R, Parkos CA, Quinn MT, Springer TA. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD1). J Cell Biol. 1995; 130:1473-82.
    37. Bourin MC, Lundgren-Akerlund E, Lindahl U. Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan. J Biol Chem. 1990; 265:15424-31.
    38. Bourin MC, Boffa MC, Bjork I, Lindahl U. Functional domains of rabbit thrombomodulin. Proc Natl Acad Sci USA. 1986; 83: 5924-8.
    39. Takano S, Kimura S, Ohdama S, Aoki N. Plasma thrombomodulin in health and diseases. Blood. 1990; 76: 2024-9.
    40. Yamamoto S, Mizoguchi T, Tamaki T, Ohkuchi M, Kimura S, Aoki N. Urinary thrombomodulin, its isolation and characterization. J Biochem (Tokyo). 1993; 113: 433-40.
    41. Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci USA. 1981; 78: 2249-52.
    42. Ikeda, T., Ishii, H., Higuchi, T., Sato, K., Hayashi, Y., Ikeda, K. and Hirabayashi, Y. Localization of thrombomodulin in the anterior segment of the human eye. Invest Ophthalmol Vis Sci. 2000; 41: 3383-90.
    43. McCachren SS, Diggs J, Weinberg JB, Dittman WA. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood. 1991; 78: 3128-32.
    44. Raife, T.J., Lager, D.J., Madison, K.C., Piette, W.W., Howard, E.J., Sturm, M.T., et al. Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. J Clin Invest. 1994; 93: 1846-51.
    45. Ogura, M., Ito, T., Maruyama, I., Takamatsu, J., Yamamoto, S., Ogawa, K., Nagura, H. and Saito, H. Localization and biosynthesis of functional thrombomodulin in human megakaryocytes and a human megakaryoblastic cell line (MEG-01). Thromb Haemost. 1990; 64: 297-301.
    46. Conway EM, Nowakowski B, Steiner-Mosonyi M. Human neutrophils synthesize thrombomodulin that does not promote thrombin-dependent protein C activation. Blood. 1992; 80: 1254-63.
    47. Soff, G.A., Jackman, R.W. and Rosenberg, R.D. Expression of thrombomodulin by smooth muscle cells in culture: different effects of tumor necrosis factor and cyclic adenosine monophosphate on thrombomodulin expression by endothelial cells and smooth muscle cells in culture. Blood. 1991; 77: 515-8.
    48. Salem HH, Maruyama I, Ishii H, Majerus PW. Isolation and characterization of thrombomodulin from human placenta. J Biol Chem. 1984; 259: 12246-51.
    49. Healy, A.M., Rayburn, H.B., Rosenberg, R.D. and Weiler, H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci USA. 1995; 92: 850-4.
    50. Boffa, M.C., Burke, B. and Haudenschild, C.C. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem. 1987; 35: 1267-76.
    51. Appelton MA, Attanoos RL, Jasani B. Thrombomodulin as a marker of vascular and lymphatic tumours. Histopathology. 1996; 29: 153-7.
    52. Kim SJ, Shiba E, Ishii H, Inoue T, Taguchi T, Tanji Y, et al. Thrombomodulin is a new biological and prognostic marker for breast cancer: an immunohistochemical study. Anticancer Res. 17: 2319-23.
    53. Takebayashi Y, Yamada K, Maruiyama E, Fujii R, Akiyama S, Aikou T. The expression of thymidine phosphorylase and thrombomodulin in human colorectal carcinoma. Cancer Lett. 1995; 92: 1-7.
    54. Tabata M, Yonezawa S, Sugihara K, Yamashita S, Maruyama I. The use of thrombomodulin to study epithelial cell differentiation in neoplastic and non-neoplastic oral lesions. J Oral Pathol Med. 1995; 24: 443-9.
    55. Ogawa H, Yanizawa S, Maruyama I, Matsushita Y, Tezuka Y, Toyyama H, et al. Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett. 2000; 149: 95-103.
    56. Lindahl AK, Boffa MC, Abilgaard U. Increased plasma thrombomodulin in cancer patients. Thromb Haemost. 1993; 69: 112-4.
    57. Boffa MC, Lapeyrere C, Berard M, Lindahl AK, Flageul B, Chemaly P, et al. Plasma thrombomodulin level in malignancy varies according to the tumour type. Nouv Rev Fr Hematol. 1994; 36: S87-S8.
    58. Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1987; 264: 4743-6.
    59. Nesheim M, Wang W, Boffa M, Nagashima M, Morser J, Bajzar L. Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb Haemost. 1997; 78: 386-91.
    60. Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation. 2005; 111: 1627-36.
    61. Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem. 2003; 278: 46750-9.
    62. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science. 1997; 275: 73-7.
    63. Villena J, Berndt C, Grans F, Reina M, Vilar S. Syndecan-2 expression enhances adhesion and proliferation of stably transfected Swiss 3T3 cells. Cell Biol Int. 2003; 27: 1005-10.
    64. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991; 64: 841-8.
    65. Zhang W, Swanson R, Xiong Y, Richard B, Olson ST. Antiangiogenic antithrombin blocks the heparan sulfate-dependent binding of proangiogenic growth factors to their endothelial cell receptors: evidence for differential binding of antiangiogenic and anticoagulant forms of antithrombin to proangiogenic heparan sulfate domains. J Biol Chem. 2006; 281: 37302-10.
    66. Choi S, Lee E, Kwon S, Park H, Yi JY, Kim S, Han IO, Yun Y, Oh ES. Transmembrane domain-induced oligomerization is crucial for the functions of syndecan-2 and syndecan-4. J Biol Chem. 2005; 280: 42573-9.
    67. Higashiyama S, Abraham JA, Klagsbrun M. Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J Cell Biol. 1993; 122: 933-40.
    68. Oh ES, Woods A, Lim ST, Theibert AW, Couchman JR. Syndecan-4 proteoglycan cytoplasmic domain and phosphatidylinositol 4,5-bisphosphate coordinately regulate protein kinase C activity. J Biol Chem. 1998; 273: 10624-9.
    69. Keum E, Kim Y, Kim J, Kwon S, Lim Y, Han I, Oh ES. Syndecan-4 regulates localization, activity and stability of protein kinase C-alpha. Biochem J. 2004; 378: 1007-14.
    70. Longley RL, Woods A, Fleetwood A, Cowling GJ, Gallagher JT, Couchman JR. Control of morphology, cytoskeleton and migration by syndecan-4. J Cell Sci. 1999; 112: 3421-31.
    71. Kusano Y, Oguri K, Nagayasu Y, Munesue S, Ishihara M, Saiki I, Hideto Y, Hiroshi Y, Minoru O. Participation of syndecan 2 in the induction of stress fiber formation in cooperation with integrin alpha5beta1: structural characteristics of heparan sulfate chains with avidity to COOH-terminal heparin-binding domain of fibronectin. Exp Cell Res. 2000; 256: 434-44.
    72. Gallo, R., Kim, C., Kokenyesi, R., Adzick, N.S., Bernfield, M. Syndecans-1 and -4 are induced during wound repair of neonatal but not fetal skin. J Invest Dermatol. 1996; 107: 676-83.
    73. Wilcox-Adelman, S.A., Denhez, F., Iwabuchi, T., Saoncella, S., et al. Syndecan-4: dispensable or indispensable? Glycoconj J. 2003; 19: 305-13.
    74. Peterson, J.J., Rayburn, H.B., Lager, D.J., Raife, T.J., Kealey, G.P., Rosenberg, R.D., Lentz, S.R. Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds. Am J Pathol. 1999; 155: 1569-75.

    無法下載圖示 校內:2106-07-27公開
    校外:2106-07-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE