簡易檢索 / 詳目顯示

研究生: 莊豐益
Chuang, Feng-Yi
論文名稱: 有限元素法應用於無鋪面加勁路基模型之尺寸研究
Study of Size Effects on Reinforced Unpave Road Model with Finite Element Method
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 145
中文關鍵詞: 無鋪面加勁道路等值矩形胎印面積動態荷載模型尺寸邊界影響
外文關鍵詞: reinforced unpaved road, equivalent rectangular tire print area, dynamic load, model size, boundary effect
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為使無鋪面加勁道路試驗模型能夠在實驗室於良好之控制條件下進行試驗,如何決定試驗箱體與載重範圍間之比例關係則為首要條件,本研究以標準胎壓480kPa及等值矩形胎印面為基準將模型以等比例放大,並與無加勁之無鋪面路基進行分析比較,結果顯示模型之尺寸對於加勁材之驅動張力產生影響,而隨著模型尺寸之增大對於加勁材所激發之張力其影響程度則趨於減小。當底部邊界深度大於12.5倍之等值矩形胎印面長邊且模型面積Am與等值矩形胎印面積At之比例係數為155時,因邊界影響而產生之額外應力增量與加勁材驅動張力皆有明顯收斂之趨勢。

    It is essential for an unpaved reinforced road model to be tested under controlled environmental conditions. Therefore, the first priority is to find out how to determine the proportional relationship between the test model and the load range. Our study uses the standard tire pressure 480kPa and equivalent rectangular area as a benchmark model. To draw a comparison with unreinforced unpaved roads enlarge the model proportionally. Our comparative analysis indicates that the size of the model has significant influence on the mobilized tension of the reinforced material. The bigger the model size is, the less the mobilized tension of reinforced material is. Moreover, both additional stress increment caused by the boundary and mobilized tension of reinforced material evidently converge when (1) the depth of the bottom boundary is more than 12.5 times the length of the long side of the equivalent rectangular tread printing surface area, and (2) the proportional coefficient between Am, the surface area of the model, and At, the equivalent rectangular tire print area, is 155.

    目錄 摘要 Ⅰ Summary Ⅱ 誌謝 Ⅵ 目錄 Ⅶ 表目錄 XI 圖目錄 XIII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3研究方法及流程 3 1.4論文架構 5 第二章 文獻回顧 6 2.1 輪壓載重形式 6 2.1.1 輪胎接觸壓力分佈 6 2.1.2等值單輪荷重 7 2.2 地表荷載之應力傳遞與變形 9 2.2.1 地表受圓形荷載之應力應變增量與變形 9 2.2.2 彈性層狀系統 11 2.2.3 二層系統介面對垂直應力增量之影響 14 2.3 土壤承載力加勁機制 15 2.3.1路基加勁機制 15 2.3.2薄膜效應 17 2.4 加勁材強度參數 19 2.5 深度邊界效應 20 第三章 ABAQUS三維有限元素驗證 23 3.1 ABAQUS分析模組 23 3.1.1 ABAQUS分析模式建立 23 3.1.2 ABAQUS分析流程 25 3.2 ABAQUS依據之基本理論 27 3.2.1 有限元素法 27 3.2.2 異質材料之接觸行為 29 3.3 元素選定 31 3.3.1 大地工程常用元素 31 3.4 ABAQUS三維有限元素驗證 33 3.4.1 尺寸與載重範圍 33 3.4.2 材料參數與邊界條件 34 3.5 單層系統靜態荷載應力驗證 38 3.5.1 單層線彈性系統 38 3.5.2 單層彈塑性系統 42 3.6 二層系統界面接觸驗證 45 3.7 二層系統靜態荷載應力驗證 49 3.7.1二層彈性系統 49 3.7.2二層彈塑性系統 53 3.8二層彈塑性系統動態應力應變行為 59 3.9 ABAQUS三維有限元素驗證結果探討 68 第四章 無鋪面加勁路基模型 71 4.1數值模型規劃與建立 71 4.2材料與界面參數 72 4.2.1 土壤材料之彈性參數 72 4.2.2 土壤材料之塑性參數 74 4.2.3底基層材料之受力反應 77 4.2.4 加勁材材料參數 81 4.2.5 土壤與加勁材之界面 84 4.3靜態分析 86 4.4動態分析 90 4.4.1 車行速度與載重歷時 90 4.4.2 材料阻尼 92 4.4.3元素形式與網格尺寸 94 4.4.4動態分析時間增量 95 4.4.5動態荷載與邊界條件 97 第五章 無鋪面加勁路基模型分析結果 99 5.1 加勁材張力分析 99 5.2 模型尺寸影響 102 5.2.1應力歷時 102 5.2.2應力分析 109 5.2.3應變分析 112 5.3試驗模型規劃 116 第六章 結論與建議 118 6.1結論 118 6.2建議 119 參考文獻 120 附錄A 125 附錄B 133 附錄C 136

    1.林志憲(2003),「應用解析方法評估瀝青混凝土之力學機制」,博士論文,國立成功大學土木工程學系
    2.American Association of State Highway and Transportation Officials.(1998),“LRFD Bridge Design Specifications”, Second Edition, American Association of State Highway and Transportation Officials, Washington, D. C.
    3.Barenberg,E.J.(1980),“Design Procedures for Soil-Fabric-Aggregate Systems with Mirafi500X Fabric”,UILU-ENG-80-2019, Department of Civil Engineering, University of Illinois at Urbana,Champaign, IL, USA,October 1980,p.26.
    4.Burd,H.J.(1986),“Analysis of Membrane Action in Reinforced Unpaved Roads”,University of Oxford Department of Engineering Science.
    5.Burd,H.J.(1986),“A Large Displacement Finite Element Analysis of A Reinforced Unpaved Road”, Doctor of Philosophy at the University of Oxford.
    6.Chen,W.F.,and Baladi,G.Y.(1985),“Soil plasticity”,Theory and implementering.Elsevier science publishers B.V.ISBN .vol. 38.
    7.Drescher,A.,Labuz,J.,Guzina,B.(2004) and Davich,P.,“Small Strain and Resilient Modulustesting of Granular Solis”, Minnesota Department of Transportation Research Services Section.
    8.Espinoza,R.D.,and Bray,J.D.(1995),“An Integrated Approach to Evaluating Single-Layer Reinforced Soils”,Geosynthetics International, Vol. 2, No.4,pp. 732-742.
    9.Giroud,J.P.(1970),” Stresses Under Linearly Loaded Rectangular Area”.Jnl.Soil Mechs. Fndns. Divn., ASCE,Vol.96, No.SM1, pp.263-268.
    10.Giroud, J.P., and Noiray, L. (1981), “Geotextile - reinforced Unpaved Road Design”. Journal of the Geotechnical Engineering Division, ASCE.107 (GT9): 1233.1254.
    11.Gu, J. (2011),“Computation Modeling of Geogrid Reinforced Soil Foundation and Geogrid Reinforced Base in Flexible Pavemrnt”. Doctor of Philosophy at the Louisiana State University.
    12.Haliburton,T.A., Lawmaster,J.D.,and Mcguffey,V.C.(1981), “The Use of Engineering Fabrics in Tarnsportation Related Application”,Final Report under Contract No.DTFH-80-C-0094,Federal Highway Administration.
    13.Houlsby,G. T., Jewell,R.A.(1990),“Design of Reinforced Unpaved Roads for Small Rut Depths”, Proceedings of the 4th International Conference on Geotextiles, Geomembranes and Related Products, The Hague, The Netherlands, May 28-June Vol.1 pp.171-176.
    14.Hibbit, K. S. (1994), “ABAQUS/Standard User's Manual”, R.I. Hibbit, Karlsson & Sorensen.
    15.Huang,Y. H.(2004),“Pavement Analysis and Design”, Upper Saddle River,NJ: Pearson/Prentice Hall, pp27-276.
    16.Helwany,S.(2007),“Applied Soil Mechanics with ABAQUS Applications”, John Wiley and Sons, Inc, pp.21-86.
    17.Ingold,T.S.(1982),“Reinforced Earth”, Thomas Telford, London.
    18.Kim,D., Rodrigo,S.,and Adolph,G. A.(2005),“Effects of Supersingle Tire Loadings on Pavements”, Journal of Transportation Engineering, Vol. 131,No. 10, pp. 723-739.
    19.Kawa,I.,Zhang, Z.and Hudson,W.R.(1998) “Evaluation of The AASHTO 18-Kip Load Equivalency Concept”, Center for Transportation Research The University of Texas at Austin, Report No. FHWA/TX-05/0-1713-1
    20.Kim,D., and Nayyar,Z. S.(2006),“Simplification of Resilient Modulus Testing for Subgrades”, Joint Transportation Research Program .
    21.Kim,M.(2007),“There-Dimensional Finite Element Analysis of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior” , Doctor of philosophy at the University of Illinois.
    22.Koerner,R. M.(1997), “Design with Geosynthetics”,4th edition, Prentice Hall,Upper Saddle River, New Jersey., pp.69-233.
    23.Konstantinos,G.(2003),“Development, Implementation and Application of Partially Saturated Soil Models in Finite Element Analysis”, Doctor of Philosophyat the University of London.
    24.Kramer,S.L.(1996),“Geotechnical Earthquake Engineering”, Prentice Hall, Englewood cliffs, New Jersey., pp.184-248.
    25.Love, J.P.(1984),“Model Testing of Geogrids in Unpaved Roads”, Doctor of Philosophy at the University of Oxford .
    26.Love,J.P.,Burd, H.J., Milligan,G.W.,and Houlsby,G.T.(1987), ”Analytical and Model Studies of Reinforcement of a Layer of Granular Fill on Soft Clay SubgradeCanadian”, Geotechnical Journal,Vol. 24, No. 4, pp. 611-622.
    27.Leng,J.,and Gabr,M. A.(2005),“Numerical analysis of stress-deformation response in reinforced unpaved road sections”,Geosynthetics International .
    28.Milovic,D.M.,Touzot, G. and Tournier,J.P.(1970), “Stresses and Displacement in an Elastic Layer due to Inclined and Eccentric Load Over a Rigid Strip”, Geotechnique, Vol.20, No.3, pp.231-252.
    29.Poulos,H.G.,and Davis,E.H.(1974),”Elastic Solutions for Soil and Rock Mechanics”, John Wiley and Sons, Inc, New York, USA,411 p.
    30.Perkins,S.W.,and Cuelho,E.V.(1999),“Soil-Geosynthetic Interface Strength and Stiffness Relationships from Pullout Tests”,Geosynthetics International,Vol.6,No.5,pp. 321-346.
    31.Perkins, S.W. (1999), “Mechanical Response of Geosynthetic-Reinforced Flexible Pavements”, Geosynthetics International, Vol. 6, No. 5, pp.347-382 .
    32.Perkins,S.W.(2001),”Numerical Modeling of Geosynthetic Reinforced Flexible Pavements: Final Report”, Montana Department of Transportation, Helena, Montana, Report No. FHWA/MT-01/002/99160-2, 97p.
    33.Perkins, S. W. (2004), ”Development of Design Methods for Geosynthetic Reinforced Flexible Pavements: Final Report”, Montana State University, MT
    34.Rijlaarsdam,D.J.(2005), “Modelling Damping in Linear Dynamic Systems”,Final Bachelor Project.
    Rowe,R.D.and Verge,A.(2013), “Prediction of Geosynthetic Clay Linear Desiccation in Low Stress Applications”, Geosynthetics International, Vol.20, No. 5, pp.301-315 .
    35.Soderman,K.L.and Giroud,J.P.(1995), “Relationships Between Uniaxial and Biaxial Stress and Strain in
    Geosynthetics”, Geosynthetics International, Vol. 2, No. 2, pp. 495-504.
    36.Werkmeister,S.,Dawson,A.R. and Wellner,F(2001),“Permanent deformation behavior of granular materials and the Shakedown concept”, Proceedings 80th Annual Meeting, Transportation Research Board, Washington D.C., Paper No. 01-0152.
    37.Wang,F.(2005),“Mechanistic - Empirical Study of Effects of Truck Tire Pressure on Asphalt Pavement Performance”, Doctor of Philosophy at the University of Texas.
    38.Yin,J.H.(1997),“Modelling Geosynthetic- Reinforced Granular Fills Over Soft Soil”,Geosynthetics International, Vol. 4, No. 2, pp. 165-185.
    39.Zaghloul,S.M.,and White,T.D.(1993),“Use of a Three-Dimensional, Dynamic Finite Element Program for Analysis of Flexible Pavement.” Transportation Research Record 1388, TRB, National Research Council, Washington, D.C., pp. 60-69.

    下載圖示 校內:2015-07-28公開
    校外:2015-07-28公開
    QR CODE