| 研究生: |
楊淳善 Yang, Chun-Shan |
|---|---|
| 論文名稱: |
利用微型裝置篩選微生物燃料電池的發電條件 Using miniature device to screen the electric generation conditions of microbial fuel cell |
| 指導教授: |
吳意珣
Ng, I-Son |
| 共同指導教授: |
王翔郁
Wang, Hsiang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 微生物燃料電池 、微型裝置 、空氣陰極 、篩選操作條件 |
| 外文關鍵詞: | microbial fuel cell, micro-scale device, air-cathode, screening operational conditions |
| 相關次數: | 點閱:130 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著能源缺乏及環境物染的問題日益受到重視,由於微生物燃料電池可以同時處理廢水與產電,因此成為替代性能源中發展的重要方向。一般在微生物燃料電池的條件篩選上需要大量的樣品、時間與成本,因此本研究利用無膜式微型層流微生物燃料電池(LF-μMFC)其開路電壓差來比較微生物在不同條件下的產電活性,並將結果與實驗室規模H型微生物燃料電池進行比對,驗證LF-μMFC可以應用於微生物與碳源之快速篩選。此外利用微型空氣陰極微生物燃料電池(AC-μMFC)來進行不同條件的連續式操作,亦發現其可以用來篩選微生物燃料電池的操作條件。利用微型裝置來快速篩選,可更有效率改善較大規模微生物燃料電池之操作條件與其產電效果。
整個LF-μMFC的設計是為了盡量減少外界因素對於產電的影響,而純粹以開路電壓差來反映微生物的產電能力。本研究將此LF-μMFC應用在檢測不同碳源對於不同微生物產電的影響,所用的碳源包括:甘油、葡萄糖、蔗糖、醋酸鈉和乳酸。所用的微生物包括:Proteus hauseri ZMd44、Aeromonas hydrophila NIU01和Shewanella oneidensis MR-1。結果顯示,蔗糖較適合P. hauseri ZMd44產電;甘油較適合A. hydrophila NIU01產電;葡萄糖較適合S. oneidensis MR-1產電。為了驗證上述LF-μMFC之結果,接著利用H型微生物燃料電池進行不同微生物在不同碳源中的培養,P. hauseri ZMd44以蔗糖作為碳源之庫倫效率為最大約5.85 %。A. hydrophila NIU01以甘油作為碳源之庫倫效率為最大約3.38 %。S. oneidensis MR-1以葡萄糖作為碳源之庫倫效率為最大約0.63 %。將陽極電解液利用液相層析儀分析成分,可以發現代謝產物與產電趨勢及細胞濃度有關。不同微生物利用不同碳源產電會得到不同的代謝產物,P. hauseri ZMd44利用不同碳源產電的主要代謝產物皆為乙酸與丙酸;A. hydrophila NIU01利用甘油當碳源產電的主要代謝產物為1,3-丙二醇,利用其他碳源產電的主要代謝產物則是乙酸;S. oneidensis MR-1利用不同碳源產電的主要代謝產物皆為甲酸與乙酸。
由於在先前的實驗中,P. hauseri ZMd44利用蔗糖作為碳源所得到的庫倫效率最高,因此研究後段探討增加蔗糖濃度對於產電會有什麼影響。先以LF-μMFC進行不同濃度蔗糖的產電測試,結果發現當蔗糖濃度提升至2.5倍時開路電壓差最高,但當蔗糖濃度提升至3倍以上時,開路電壓差反而降低。接著以H型微生物燃料電池來驗證其結果,P. hauseri ZMd44以2.5倍濃度蔗糖當碳源之庫倫效率約6.10 %;以3倍濃度蔗糖當碳源之庫倫效率約6.04 %。將陽極電解液利用液相層析儀分析成分,發現3倍濃度蔗糖組別的代謝產物中含有乙醇,可能為使產電輸出降低的原因。
將H型微生物燃料電池與LF-μMFC所得的結果比較,發現LF-μMFC所測得的開路電壓差與H型微生物燃料電池的庫倫效率有高度的線性關係,證明此LF-μMFC可應用於篩選適合微生物燃料電池發電的碳源種類以及最佳碳源濃度,對於未來微生物燃料電池的條件篩選與最佳化有相當大的潛力。
由於LF-μMFC雖然可應用在微生物以及碳源的快速篩選,但無法將足量的微生物培養在裝置中進行連續式培養或是操作條件的最適化,因此使用AC-μMFC進行不同操作條件的實驗。結果發現將微生物包覆在高分子電解質微粒中可以提升功率輸出,且減緩功率降低的速度;降低水力滯留時間會使輸出功率降低;提高碳源濃度則可以增加輸出功率,此結果證明AC-μMFC可應用在操作條件的篩選,對於未來微生物燃料電池的操作條件最佳化有相當大的潛力。
This study using two miniature devices to screen the eleectric generation conditions of microbial fuel cell (MFC), one was the laminar flow micro-scale microbial fuel cell (LF-μMFC), and the other was the air-cathode micro-scale microbial fuel cell (AC-μMFC). Three kinds of microorganisms were utilized in this study: Proteus hauseri ZMd44, Aeromonas hydrophila NIU01, and Shewanella oneidensis MR-1. Five carbon sources (sucrose, glucose, glycerol, sodium acetate and lactic acid) were chosen as independent variable.
When three microorganisms were investigated in the LF-μMFC, sucrose resulted in the highest ΔOCV for P. hauseri ZMd44, glycerol resulted in the highest ΔOCV for A. hydrophila NIU01 and glucose resulted in the highest ΔOCV for S. oneidensis MR-1. Next, lab-scale H-type MFCs were applied to confirm the results of LF-μMFC. Comparing the ΔOCV from LF-μMFC with the coulombic efficiency from H-type MFC, the results were highly correlateed. This shows that LF-μMFC can predict the efficiency of electricity generation in larger scale setup and has great potential in screening optimal conditions for MFCs.
In order to find the optimal condition of electricity generation, several conditions were tested in AC-μMFC. When the microorganisms were encapsulated in polyelectrolyte microparticle, the output power is higher than directly form biofilm on the surface of the anode. When reducing hydraulic retention time, the output power was decreased. When raising concentration of carbon sources, the output power was increased. This shows that AC-μMFC has great potential in screening optimal conditions for MFCs.
1. Allen, R. M., & Bennetto, H. P. Microbial fuel-cells: electricity production from carbohydrates. Applied biochemistry and biotechnology, 39, 27-40, 1993.
2. Alakomi, H. L., et al. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology, 66(5), 2001-2005, 2000.
3. Bard, A. J., Faulkner, L. R., Leddy, J., & Zoski, C. G. Electrochemical methods: fundamentals and applications (Vol. 2). Wiley, New York, 1980.
4. Brown, S. W., Oliver, S. G., Harrison, D. E. F., & Righelato, R. C. Ethanol inhibition of yeast growth and fermentation: differences in the magnitude and complexity of the effect. European Journal of Applied Microbiology and Biotechnology, 11(3), 151-155, 1981.
5. Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 295(5554), 483-485, 2002.
6. Birmpa, A., Vantarakis, A., Paparrodopoulos, S., Whyte, P., & Lyng, J. Efficacy of three light technologies for reducing microbial populations in liquid suspensions. BioMed Research International, 2014, 2014
7. Baudler, A., Schmidt, I., Langner, M., Greiner, A., & Schröder, U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy & Environmental Science, 8(7), 2048-2055, 2015.
8. Cohen, B. The bacterial culture as an electrical half-cell. Journal of Bacteriology, 21(1), 18-19, 1931.
9. Chiao, M., Lam, K. B., Su, Y. C., & Lin, A. A miniaturized microbial fuel cell, Technical Digest of the Solid-State Sensors and Actuators Workshop, June 2002, Hilton Head Island, 59-60, 2002.
10. Choi, Y., Jung, E., Kim, S., & Jung, S. Membrane fluidity sensoring microbial fuel cell. Bioelectrochemistry, 59(1), 121-127, 2003.
11. Cheng, S., Liu, H., & Logan, B. E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science & Technology, 40(1), 364-369, 2006.
12. Cheng, S., Liu, H., & Logan, B. E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40(7), 2426-2432, 2006.
13. Chen, B. Y., Hsueh, C. C., Liu, S. Q., Ng, I. S., & Wang, Y. M. Deciphering mediating characteristics of decolorized intermediates for reductive decolorization and bioelectricity generation. Bioresource Technology, 145, 321-325, 2013.
14. Chen, B. Y., et al. Deciphering simultaneous bioelectricity generation and reductive decolorization using mixed-culture microbial fuel cells in salty media. Journal of the Taiwan Institute of Chemical Engineers, 44(3), 446-453, 2013.
15. Chen, Y. Y., & Wang, H. Y. Polyelectrolyte microparticles for enhancing anode performance in an air–cathode μ-Liter microbial fuel cell. Applied Energy, 160, 965-972, 2015.
16. Chen, Y. Y., Fabrication of polyelectrolyte microcarrier by using microfludic system for application in microbial fuel cell (doctoral dissertation). National Cheng Kung University, Tainan, 2016.
17. Du, Z., Li, H., & Gu, T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464-482, 2007.
18. Gorby, Y. A., et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences, 103(30), 11358-11363, 2006.
19. Ieropoulos, I. A., Greenman, J., Melhuish, C., & Hart, J. Comparative study of three types of microbial fuel cell. Enzyme and Microbial Technology, 37(2), 238-245, 2005.
20. Kim, B. H., Kim, H. J., Hyun, M. S., & Park, D. H. Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology, 9(2), 127-131, 1999.
21. Kim, J. R., Cheng, S., Oh, S. E., & Logan, B. E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology, 41(3), 1004-1009, 2007.
22. Lewis, K. Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells. Bacteriological reviews, 30(1), 101, 1966.
23. Larminie, J., Dicks, A., & McDonald, M. S. Fuel cell systems explained (Vol. 2). Wiley, New York, 2003.
24. Liu, H., & Logan, B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14), 4040-4046, 2004.
25. Logan, B. E., Murano, C., Scott, K., Gray, N. D., & Head, I. M. Electricity generation from cysteine in a microbial fuel cell. Water Research, 39(5), 942-952, 2005.
26. Logan, B. E., et al. Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181-5192, 2006.
27. Lovley, D. R. Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 4(7), 497-508, 2006.
28. Logan, B. E. Microbial Fuel cel, Wiley, New York, 2007.
29. Logan, B. E., Cheng, S., Watson, V., & Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology, 41(9), 3341-3346, 2007.
30. Lin, C. H., Screening of carbon sources for enhancing the performance of microbial fuel cell using laminar flow based microfluidic microbial fuel cell. (master's thesis). National Cheng Kung University, Tainan, 2014.
31. Ng, I. S., Zhang, X., Zhang, Y., & Lu, Y. Molecular cloning and heterologous expression of laccase from Aeromonas hydrophila NIU01 in Escherichia coli with parameters optimization in production. Applied Biochemistry and Biotechnology, 169(7), 2223-2235, 2013.
32. Oh, S. E., & Logan, B. E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied Microbiology and Biotechnology, 70(2), 162-169, 2006.
33. Potter, M. C. Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(571), 260-276, 1911.
34. Park, D. H., & Zeikus, J. G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Applied and Environmental Microbiology, 66(4), 1292-1297, 2000.
35. Pant, D., Bogaert, G.V., Diels, L., & Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533-1543, 2010.
36. Qian, F., Baum, M., Gu, Q., & Morse, D. E. A 1.5 µL microbial fuel cell for on-chip bioelectricity generation. Lab on a Chip, 9(21), 3076-3081, 2009.
37. Qian, F., & Morse, D. E. Miniaturizing microbial fuel cells. Trends in Biotechnology, 29(2), 62-69, 2011.
38. Rohrback, G. H., Scott, W. R. & Canfield, J. H. Biochemical fuel cells. Proceedings of the 16th Annual Power Sources Conference, 18-21, 1962.
39. Rabaey, K., et al. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology 70(9), 5373-5382, 2004.
40. Rabaey, K., et al. Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science & Technology, 39(9), 3401-3408, 2005.
41. Reguera, G., et al. Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098-1101, 2005.
42. Ribeiro, A. C. F., et al. Binary diffusion coefficients for aqueous solutions of lactic acid. Journal of Solution Chemistry, 34(9), 1009-1016, 2005.
43. Siu, C. P. B., & Chiao, M. A Microfabricated PDMS Microbial Fuel Cell. Journal of Microelectromechanical Systems, 6(17), 1329-1341, 2008.
44. Singh, S., & Songera, D. S. A review on microbial fuel cell using organic waste as feed. CIBTech Journal of Biotechnology, 2, 2319-3859, 2012.
45. Venkateswaran, K., et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 49(2), 705-724, 1999.
46. Wang, H. Y., Bernarda, A., Huang, C. Y., Lee, D. J., & Chang, J. S. Micro-sized microbial fuel cell: a mini-review. Bioresource Technology, 102(1), 235-243, 2011.
47. Wang, H. Y., & Su, J. Y. Membraneless microfluidic microbial fuel cell for rapid detection of electrochemical activity of microorganism. Bioresource Technology, 145, 271-274, 2013.
48. Wang, N., et al. Draft genome sequence of the bioelectricity-generating and dye-decolorizing bacterium Proteus hauseri strain ZMd44. Genome Announcements, 2(1), e00992-13, 2014.
49. Zhang, Z., et al. Electron transfer by domain movement in cytochrome bc1. Nature, 392(6677), 677-684, 1998.
50. Zhao, F., et al. Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochemistry Communications, 7(12), 1405-1410, 2005.
51. Zhao, F., et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environmental Science & Technology, 40(17), 5193-5199, 2006.