| 研究生: |
黃則惟 Huang, Tse-Wei |
|---|---|
| 論文名稱: |
一種基於格拉斯曼碼所設計可擴展規模之預先通道編碼技術 A Scalable Precoding Scheme based on Grassmannian Codebook for MU-MIMO |
| 指導教授: |
劉光浩
Liu, Kuang-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 多用戶多輸入多輸出系統 、格拉斯曼編碼 、預先通道編碼 、低反饋率 、基因演算法 、通道相關性 |
| 外文關鍵詞: | Multi-user MIMO, Grassmannian codebook, precoding, low feedback rate, genetic algorithm, channel correlation |
| 相關次數: | 點閱:145 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文針對多用戶之多輸入多輸出系統提出一個格拉斯曼編碼方式來處理通道資訊反饋傳輸受限制的問題。在使用預先編碼的空間多工系統之中,基地台利用少量格拉斯曼編碼之反饋,將資料流分集給輸出天線,使訊號與干擾加雜訊比降低。本方法結合量化反饋的方式,使預先編碼系統在低訊雜比情況下效能提升。本方法利用格拉斯曼編碼解決通道相關性之問題,並使用基因演算法降低計算複雜度。
低反饋的預先編碼方式分成兩種。當訊雜比低時,使用類比數位轉換器之量化反饋系統有較好的位元錯誤率。然而當訊雜比增加,量化雜訊會使位元錯誤率無法更低而達到飽和。使用格拉斯曼編碼方式可以降低訊號與干擾加雜訊比,卻因為選擇最佳編碼而增加系統複雜度。本方法使用基因演算法代替遍歷搜尋最佳編碼,使格拉斯曼編碼在用戶數較高的情形下,計算複雜度能被限制。另外,本方法使用壓擴技術,使格拉斯曼編碼能夠在通道具相關性時,有低的位元錯誤率。
This thesis presents a precoding scheme based on Grassmannian codebook with low feedback rate in MU-MIMO systems. For a spatial-multiplexing system, the codebook-based precoding is attractive for its low feedback rate requirement. In this context, the codebook design based on Grassmannian line packing has been proposed for multi-user MIMO systems. However, Grassmannian codebook requires to operate at sufficiently high signal-to-noise ratio (SNR) and spatially uncorrelated channels.
To address the aforementioned issues, the solution proposed in this work consists of two parts. To reduce the feedback rate requirement for MU-MIMO precoding, the channel state information (CSI) is quantized. However, the BER tends to be saturated in high SNR region due to quantization noise. And also when the channel independence is corrupted, companding is used in Grassmannian codebook precoding to make BER lower. On the other hand, searching the optimal codeword in the multi-user scenario incurs high computational complexity. To remedy the difficulty, a low-complexity and efficient searching method is proposed based on genetic algorithm (GA). Simulation results are presented to demonstrate the efficacy of the proposed precoding method for MU-MIMO systems.
[1] Christoph Studer and Giuseppe Durisi. Quantized massive mu-mimo-ofdm uplink. IEEE Transactions on Communications, 64(6):2387–2399, 2016.
[2] Fang Shu, Wu Gang, Xiao Yue, and Li Shao-qian. Multi-user mimo linear precoding with grassmannian codebook. In Communications and Mobile Computing, 2009. CMC’09. WRI International Conference on, volume 1, pages 250–255. IEEE, 2009.
[3] Yong Soo Cho, Jaekwon Kim, Won Young Yang, and Chung G Kang. MIMO-OFDM wireless communications with MATLAB. John Wiley & Sons, 2010.
[4] David J Love, Robert W Heath, Wiroonsak Santipach, and Michael L Honig. What is the value of limited feedback for mimo channels? IEEE Communications Magazine, 42(10):54–59, 2004.
[5] David J Love, Robert W Heath, and Thomas Strohmer. Grassmannian beamforming for multiple-input multiple-output wireless systems. IEEE transactions on information theory, 49(10):2735–2747, 2003.
[6] Renaud-Alexandre Pitaval, Olav Tirkkonen, and Steven D Blostein. Density and bounds for grassmannian codes with chordal distance. In Information Theory Proceedings
(ISIT), 2011 IEEE International Symposium on, pages 2298–2302. IEEE, 2011.
[7] David James Love and Robert W Heath. Grassmannian beamforming on correlated mimo channels. In Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE, volume 1, pages 106–110. IEEE, 2004.
[8] A Kaye and D George. Transmission of multiplexed pam signals over multiple channel and diversity systems. IEEE Transactions on Communication Technology, 18(5):520–526, 1970.
[9] Weifeng Su, Xiang-Gen Xia, and KJ Ray Liu. A systematic design of high-rate complex orthogonal space-time block codes. IEEE Communications Letters, 8(6):380–382, 2004.
[10] Quentin H Spencer, A Lee Swindlehurst, and Martin Haardt. Zero-forcing methods for downlink spatial multiplexing in multiuser mimo channels. IEEE Transactions on Signal Processing, 52(2):461–471, 2004.
[11] Anders Host-Madsen and Aria Nosratinia. The multiplexing gain of wireless networks. In Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on, pages 2065–2069. IEEE, 2005.
[12] Gerard J Foschini and Michael J Gans. On limits of wireless communications in a fading environment when using multiple antennas. Wireless personal communications, 6(3):311–335, 1998.
[13] Berna Ozbek and Didier Le Ruyet. ¨ Feedback strategies for wireless communication. Springer Science & Business Media, 2013.
[14] Chiara Risi, Daniel Persson, and Erik G Larsson. Massive mimo with 1-bit adc. arXiv preprint arXiv:1404.7736, 2014.
[15] P-S Kildal and Kent Rosengren. Correlation and capacity of mimo systems and mutual coupling, radiation efficiency, and diversity gain of their antennas: simulations and measurements in a reverberation chamber. IEEE Communications Magazine, 42(12):104–112, 2004.
[16] Hon Tat Hui. Influence of antenna characteristics on mimo systems with compact monopole arrays. IEEE Antennas and Wireless Propagation Letters, 8:133–136, 2009.
[17] Hon Tat Hui. Building antenna characteristics into mimo channel simulation. International Journal of Electronics, 97:703–714, 2010.
[18] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137, 1982.
[19] Leiming Zhang, Lingyang Song, Meng Ma, and Bingli Jiao. On the minimum differential feedback for time-correlated mimo rayleigh block-fading channels. IEEE Transactions on Communications, 60(2):411–420, 2012.
[20] John H Conway, Ronald H Hardin, and Neil JA Sloane. Packing lines, planes, etc.: Packings in grassmannian spaces. Experimental mathematics, 5(2):139–159, 1996.
[21] Inderjit S Dhillon, Jr RW Heath, Thomas Strohmer, and Joel A Tropp. Constructing packings in grassmannian manifolds via alternating projection. Experimental mathematics, 17(1):9–35, 2008.
[22] Alan T James. Distributions of matrix variates and latent roots derived from normal samples. The Annals of Mathematical Statistics, pages 475–501, 1964.
[23] David James Love and Robert W Heath. Limited feedback unitary precoding for orthogonal space-time block codes. IEEE Transactions on Signal Processing, 53(1):64–73, 2005.
[24] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.
[25] Allen Gersho and Robert M Gray. Vector quantization and signal compression, volume 159. Springer Science & Business Media, 2012.