簡易檢索 / 詳目顯示

研究生: 吳明鍵
Wu, Ming-Chien
論文名稱: 半結晶性聚酯類高分子之多晶態、結晶相轉變及球晶型態之研究
Polymorphism, Crystal Phase Transitions and Spherulite Patterns in Semicrystalline Polyesters
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 125
中文關鍵詞: 熔融行為聚對苯二甲酸二己酯X光微分掃描熱卡計多晶態聚己二酸二丁酯結晶
外文關鍵詞: melting behavior, X-ray, DSC, crystal, polymorphism, poly(butylene adipate), poly(hexamethylene terephthalate)
相關次數: 點閱:132下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用廣角X光繞射儀、偏光顯微鏡、掃描式電子顯微鏡、穿透式電子顯微鏡及微分掃描熱卡計分析研究聚己二酸二丁酯 (poly(butylene adipate), PBA)和聚對苯二甲酸二己酯 (poly(hexametyhlene terephthalate), PHT)的多晶態及複雜的多融熔峰行為。進一步釐清PBA之多熔融峰機制與多晶態的關係,在比較高的的溫度下(31-35oC)熔融結晶或是從熔融態以較慢速度冷卻,會傾向形成較穩定的晶態;當在比較低的溫度下(25-28oC)熔融結晶則會形成晶態;而當PBA同時含有此兩種晶態時,升溫掃描的熔融過程則會顯示四個熔融峰。然而,若PBA初始僅含有晶態,則顯示P1和P3兩個熔融峰,相反的,若PBA僅含有晶態,經由升溫掃描顯示P2和P4兩個熔融峰。P2很明顯地和晶態的熔融有關,而顯的較寬廣的P4熔融峰,則是由於轉變為的晶態和再結晶之晶態的熔融重疊而形成。另外,對於態和態晶核於不同Tmax熔融熱處理,其對再結晶後的晶態影響也深入探討,當僅含態晶核的PBA以不同的Tmax熱處理至熔融態,態晶核殘留程度會不同且和Tmax有關。此外,不論初始的PBA是態或態,亦或是兩者共存,只有態晶核能夠在Tmax時的熔融態存在,如果PBA含有態晶核,則不會受結晶溫度Tc影響而再結晶為晶態。相反的,如果PBA在熔融態沒有任何晶核存在,晶態則會受到Tc的影響。
    本論文的第二部分主要探討PBA的結晶型態。利用創新的實驗設計,得到一個球晶的中心部份和外圈分別為不同結晶型態,以此探討球晶型態、結晶、多晶態及熔融行為。這種含多重型態的球晶有兩種,其一為含消光環的外圈和無消光環的中心,另一種為含消光環的中心和無消光環的外殼,進一步證明最高熔點的P4 (約在55~57oC) 代表環狀球晶晶板的熔融。藉由這種球晶的設計及分析,對於會形成環狀球晶的多晶態聚酯提供一種方法釐清多晶態、環狀球晶及熔融行為之間的關係。此外,PBA與一不定型態的高分子混摻,以PBA/phenoxy的摻合系統深入研究結晶型態,在33oC下熔融結晶,初期會形成六角形型態,最後會形成像羽毛的結晶型態。
    此外,針對PHT以氯仿(chloroform)所溶劑誘導出的結晶,也深入研究其多晶態、相轉變及結晶型態。在室溫以溶劑誘導下,PHT會形成態的結晶,以微分掃描熱卡計分析態結晶會顯示三個吸熱峰,第一個峰位於100~120oC之間,而且與其他兩個峰相較之下明顯較小。研究亦發現溶劑誘導的態結態會在125oC藉由固態-固態相轉變機制變為態。另外,廣角X光繞射儀結果顯示100~125oC之間態和態會共存,這樣的多晶態共存的結晶進一步以穿透式電子顯微鏡分析,經由電子繞射證明晶態和晶態會共同存在一個球晶內。

    Polymorphic crystals and complex multiple melting behavior in polyesters, poly(butylene adipate) (PBA) and poly(hexamethylene terephthalate) (PHT), were thoroughly examined by wide-angle X-ray diffraction (WAXD), polarized-light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetery (DSC). Further clarification on mechanisms of multiple melting peaks related to polymorphic crystal forms in PBA was attempted. More stable -form crystal is normally favored for crystallization from melt at higher temperatures (31-35oC), or upon slow cooling from the melt; while the -form is the favored species for crystallization at low temperatures (25-28oC). PBA packed with both crystal forms could display as many as four melting peaks. However, PBA initially contained only the -crystal exhibited dual melting peaks of P1 and P3, which are attributed to dual lamellar distributions of the -crystal. By contrast, PBA initially contained only the -crystal could also exhibit dual melting peaks (P2 and P4) upon scanning. While P2 is clearly associated with melting of the initial -crystal, the fourth melting peak (P4), appearing rather broad, was determined to be associated with superimposed thermal events of crystal transformation from - to -crystal and final re-melting of the new re-organized -crystal. Effects of -form and -form nuclei on polymorphic morphology of PBA upon re-crystallization from molten states treated to various Tmax were also examined. As the PBA initially containing the sole -crystal was brought to a molten state of various Tmax, extents of trace -form crystal nuclei varied and were dependent on Tmax. Furthermore, it did not matter the PBA initially contained either - or -form crystals (or both) because only a single type of -nuclei could be left upon treatment to molten liquid state at Tmax. PBA crystallized with prior -nuclei could be packed with -crystal, regardless of temperature of Tc. Oppositely, for re-crystallization from molten PBA without any nuclei, the crystalline polymorphism was correspondingly influenced by Tc.
    The second part of this thesis is to explore the crystal morphology in PBA. In-situ spherulitic morphology, crystals, polymorphism and melting behavior in PBA were conducted via a novel procedure of designing composite core-shell spherulites. Two patterns of such composite spherulites were developed and they consisted of (I) ring-shell with ringless-core, (II) ring-core encapsulated with ringless shell. Analysis specifically on the ring-shell portion (with the ringless core melted) further proved that this highest melting peak (P4 at 55~57oC) represented melting of the ring-band lamellae. Via the novel design of composite patterns in a compact spherulite, the polymorphic polyester with ring-band spherulites offered a unique opportunity for further clarifying the relationships between polymorphism, ring-band spherulite, and complex melting behavior in polymers. In addition, PBA was blended with various loading of an amorphous polymer. The PBA/phenoxy blend was used as a model system for investigation in greater details. Upon crystallization at Tc=33oC, unusual morphologies of hexagon crystals at early stages and feather-like dendritic lamellar bundles at final stage of crystallization were observed in all blends of PBA/amorphous polymer.
    Additionally, the crystal polymorphism, transformation, and morphologies in chloroform solvent-cast PHT were researched. Solvent-induced crystallization of PHT at room temperature yielded an initial crystal of -form. Upon DSC scanning, the original -form in PHT exhibited three endothermic peaks. The first peak, much smaller than the other two, is in the temperature range of ca. 100~120oC. It was found that the solvent-induced -form was transformed to -form at 125oC via a solid-to-solid transformation mechanism. In addition, WAXD showed that - and -forms co-existed in the temperature range of 100-125oC. These mixed crystal forms were further identified using TEM, and the selected-area electron diffraction (ED) patterns revealed that both - and -form crystals co-existed and were packed within the same spherulite.

    CONTENT ABSTRACT (Chinese and English)……………………………………………… I ACKNOWLEDGEMENTS..……………………………………………………… V CONTENT…………………………………………………………………………. VII LIST OF TABLES…………………………………………………………………. IX LIST OF FIGURES……………………………………………………………….. X CHAPTER 1 Introduction……………………………………………………1 1.1 Polymorphism and Melting Behavior………………………1 1.2 Effects of Residual Nuclei on Polymer Crystallization……4 1.3 Morphologies of Spherulites……………………………… 7 1.4 Solvent-induced Crystallization……………………………11 1.5 Ring-banded Spherulites……………………………………12 CHAPTER 2 Theory......15 2.1 Avrami Equation 15 2.2 Keith-Padden Kinetics of Spherulitic Crystallization………15 2.3 Twisting of Polymer Crystals in Ring-Banded Spherulites…17 2.4 Self-Nucleation…………………………………………… 19 2.5 Hoffman’s Nucleation Theory………………………………19 2.6 Formation of Dendritic Crystals……………………………21 2.7 Extended Chain Crystals……………………………………23 CHAPTER 3 Experimental Section…… 25 3.1 Materials…………………………………………… 25 3.2 Preparation of Polymer Blends……………………………26 3.3 Apparatus…………………………………………………… 27 CHAPTER 4 Results and Discussion……………………… 30 4.1 Thermal and X-Ray Analysis on Polymorphic Crystals, Melting, and Crystalline Transformation in Poly(butylene adipate)………………………… 30 4.1.1 Complex melting peaks and crystal forms in PBA…… 30 4.1.2 Crystals transformation or thickening via melting/re-crystallization……………………………33 4.1.3 Multiple melting peaks for -crystal…………………35 4.1.4 Multiple melting peaks for -crystal…………………36 4.1.5 Discussions………………………………………37 4.2 Effects of -form and -form Nuclei on Polymorphic Crystalline Morphology of Poly(butylene adipate)……… 53 4.2.1 Specimen preparation with controlled crystalline nuclei………………………………………………53 4.2.2 Effect of Tmax on spherulite morphology in PBA…… 54 4.2.3 Effects of prior-crystal nuclei on PBA morphism… 55 4.2.4 Effects of prior-crystal nuclei on PBA morphism… 57 4.3 Crystal Analyses Via Composite Spherulites Comprising Maltese-Cross Core Encapsulated with Ring-Band Shell in Polymorphic Poly(butylene adipate)……………………69 4.3.1 Materials and procedures for specimen preparation 69 4.3.2 Spherulites Comprising Maltese-Cross Core Encapsulated with Ring-Band Shell………………… 70 4.4 Unusual Crystals in Blends of Poly(butylene adipate) with Low Contents of Amorphous Polymers……………………. 79 4.4.1 Morphologies of PBA and blends with amorphous polymers……………………………………………79 4.4.2 Growth rates of phenoxy/PBA blends with various compositions………………………………………82 4.4.3 Discussion……………………………………………83 4.5 Thermal Analysis, X-ray and Electron Diffraction Studies on Crystalline Phase Transitions in Solvent-Treated Poly(hexamethylene terephthalate)………………………96 4.5.1 Specimen Preparation………………………………96 4.5.2 DSC and WAXD characterization of crystal transformation………………………………………96 4.5.3 In-situ TEM on phase transition in PHT……………100 CHAPTER 5 Conclusions……………………………………………112 References…………………………………………………………………………116 Appendix……………………………………………………………………………124

    References

    [1] Buchner, S.; Wiswe, D.; Zachmann, H. G. Polymer 1989, 30, 480.
    [2] Vasanthan, N.; Salem, D. R. Macromolecules 1999, 32, 6319.
    [3] Hong, B. K.; Jo, W. H.; Lee, S. C.; Kim, J. Polymer 1998, 39, 1793.
    [4] Ju, M. -Y.; Huang, J. -M.; Chang, F. -C. Polymer 2002, 43, 2065.
    [5] Chiba, T.; Asai, S.; Xu, W.; Sumta, M. J. Polym. Sci. Polym. Phys. 1999, 37, 561.
    [6] Rosa, C. D.; Ballesteros, O. R. D.; Santoro, M.; Auriemma, F. Polymer 2003, 44, 6267.
    [7] Li, Y.; He, J.; Qiang, W.; Hu, X. Polymer 2002, 43, 2489.
    [8] Wang, C.; Hsu, Y. -C.; Lo, C. -F. Polymer 2001, 42, 8447.
    [9] Lin, R. H.; Woo, E. M. Polymer 2000, 41, 121.
    [10] Hong, P. -D.; Chung, W. -T.; Hsu, C. -F. Polymer 2002, 43, 3335.
    [11] Wu, P. -L.; Woo, E. M. J. Polym. Sci. Polym. Phys. 2003, 41, 80.
    [12] Ho, R. -M.; Ke, K. -Z.; Chen, M. Macromolecules 2000, 33, 7529.
    [13] Chung, W. -T.; Hong P. -D.; Chuah, H. H. Polymer 2004, 45, 2413.
    [14] Kim, H. G.; Robertson, R. E. J. Polym. Sci. Polym. Phys. 1998, 36, 1757.
    [15] Park, C. S.; Lee, K. J.; Kim, S. W.; Lee, Y. K.; Nam, J. D. J. Appl. Poly. Sci. 2002, 86, 478.
    [16] Wu, P L.; Woo, E. M.; Liu, H. -L. J. Polym. Sci. Polym. Phys. 2004, 42, 4421.
    [17] Hall, I. H.; Pass, M. G.; Rammo, N. N. J. Polym. Sci. Polym. Phys. 1978, 16, 1409.
    [18] Hall, I. H.; Pass, N. N. J. Polym. Sci. Polym. Phys. 1978, 16, 2189.
    [19] Lefebvre, X.; Koch, M. H. J.; Reynaers, H.; David, C. J. Polym. Sci. Polym. Phys. 1999, 37, 1.
    [20] Inomata, K.; Sasaki, S. J. Polym. Sci. Polym. Phys. 1996, 34, 83.
    [21] Guerra, G.; Vitagliano, V. M.; De Rosa, C.; Petraccone, V.; Corradini, P; Macromolecules 1990, 23, 1539.
    [22] Guerra, G.; Vitagliano, V. M.; De Rosa, C.; Petraccone, V.; Corradini, P. Macromolecules 1990, 23, 1539.
    [23] De Rosa, C.; Rapacciuolo, M.; Guerra, G.; Petraccone, V.; Corradini, P. Polymer 1992, 33, 1423.
    [24] De Rosa, C. Macromolecules 1996, 29, 8460.
    [25] Woo, E. M.; Wu, F. S. J. Polym. Sci. Polym. Phys. 1998, 36, 2725.
    [26] Sun, Y. S.; Woo, E. M. Macromolecules 1999, 32, 7836.
    [27] Woo, E. M.; Sun, Y. S.; Yang, C. P. Prog. Polym. Sci. 2001, 26, 945.
    [28] Bassett, D. C.; Olley, R. H.; Al Raheil, A. M. Polymer 1988, 29, 1745.
    [29] Chen, C. Y.; Woo, E. M. Polymer J. 1995, 27, 361.
    [30] Ko, T. Y.; Woo, E. M. Polymer 1996, 37, 1167.
    [31] Phillips, R. A.; Jones, R. L. Macromol. Chem. Phys. 1992, 200, 1912.
    [32] Penning, J. P.; Manley, R. S. J. Macromolecules 1996, 29, 77.
    [33] Penning, J. P.; Manley, R. S. J. Macromolecules 1996, 29, 84.
    [34] Rahman, M. H.; Nandi, A. K. Macromol. Chem. Phys. 2002, 203, 653.
    [35] Saheb, D. N.; Jog, J. P. J. Polym. Sci. Polym. Phys. 1999, 37, 2439.
    [36] Liu, A. S.; Liau, W. B.; Chiu, W. -Y. Macromolecules 1998, 31, 6593.
    [37] Liau, W. B.; Liu, A. S.; Chiu, W. -Y. Macromol. Chem. Phys. 2002, 203, 294.
    [38] Xiao, Q.; Yan, S.; Rogausch, K. D.; Petermann, J.; Huang, Y. J. Appl. Polym. Sci. 2001, 80, 1681.
    [39] Keith, H. D.; Padden, F. J. ;Russell, T. P. Macromolecules 1989, 22, 666.
    [40] Huang, Y.; Luo, X.; Ma, D. Eur. Polym. J. 2001, 37, 2153.
    [41] Minke, R.; Blackwell, J. J. Macromol. Sci. Phys. 1979, B16, 407.
    [42] Minke, R.; Blackwell, J. J. Macromol. Sci. Phys. 1980, B18, 233.
    [43] Pouget, E.; Almontassir, A.; Casas, M. T.; Puiggali, J. Macromolecules 2003, 36, 698.
    [44] Gan, Z.; Abe, H.; Doi, Y. Macromol. Chem. Phys. 2002, 203,2369.
    [45] Handa, Y. P.; Zhang, Z.; Wong, B. Macromolecules 1997, 30, 8499.
    [46] Sergio, B.; Stefano, V. M.; Vittorio, P.; Beniamino, P. Prog. Polym. Sci. 1991, 16, 361.
    [47] Lotz, B. Polymer 1998, 39, 4561.
    [48] Woo, E. M.; Wu, P, L.; Chiang, C. P. Liu, H. L. Macromol. Rapid. Commun. 2004, 25, 942.
    [49] Palmer, A.; Poulin-Dandurand, S.; Revd, J. F.; Brisse, F. Eur. Polym. J. 1984, 20, 783.
    [50] Brisse, F.; Palmer, A.; Moss, B.; Dorset, D.; Roughead, W. A.; Miller, D. P. Eur. Polym. J. 1984, 20, 791.
    [51] Huang, S. J. in Encyclopedia of Polymer Science and Engineering, Wiley-Interscience: New York 1985, Vol. 2, p.220.
    [52] Lyoo, W. E.; Kim, J. H.; Yoon, W. S.; Ji, B. C.; Lee, J.; Yang, S. B.; Yoo, Y.; Nam, H. D. J. Appl. Polym. Sci. 2001, 82, 1.
    [53] Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Biomacromolecules 2004, 5, 371.
    [54] Fillon, B.; Wittmann, J. C.; Lotz, B.; Thierry, A. J. Polym. Sci., Part B 1993, 31, 1383.
    [55] Fillon, B.; Thierry, A.; Wittmann, J. C. J. Polym. Sci. Part B 1993, 31, 1407.
    [56] Patrick, S. D.; Peggy, C.; Malcolm, C. J. Polym. Sci. Part B 2002, 40, 1644.
    [57] Kefeng, W.; Kancheng, M.; Zhiwu, H.; Hanmin, Z. J. Appl. Polym. Sci. 2001, 81, 78.
    [58] Cho, K.; Saheb, D. N.; Yang, H.; Kang, B. I.; Kim, J.; Lee, S. S. Polymer 2003, 44, 4053.
    [59] Cho, K.; Saheb, D. N.; Choi, J.; Yang, H. Polymer 2002, 43, 1407.
    [60] Supaphol, P.; Lin, J. S. Polymer 2001, 42, 9617.
    [61] Supaphol, P.; Spruiell, E. J. Appl. Polym. Sci. 2000, 75, 337.
    [62] Schneider, S.; Drujon, X.; Lotz, B.; Wittmann, J. C. Polymer 2001, 42, 8787.
    [63] Lotz, B.; Wittmann, J. C.; Lovinger, A. J. Polymer 1996, 37, 4979.
    [64] Bruckner, S.; Meille, S. V.; Petraccone, V.; Pirozzi, B. Prog. Polym. Sci. 1991, 16, 361.
    [65] Woo, E. M.; Wu, M. C. J. Polym. Sci. Part B 2005, 43, 1662.
    [66] Ho, R. M.; Lin, C. P.; Tsai, H. Y.; Woo, E. M. Macromolecules 2000, 33, 6517.
    [67] Iwata, T.; Kobayashi, Tabata, K.; Yonezawa, N.; Doi, Y. Macromol. Biosci. 2004, 4, 296.
    [68] Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Polym. Degrad. Stab. 2005, 87, 191.
    [69] Wu, M. C.; Woo, E. M. Polym. Int. 2005, 54, 1681.
    [70] Sun, Y.; Li, H.; Huang, Y.; Chen, E.; Zhao, L.; Gan, Z.; Yan, S. Macromolecules 2005, 38, 2739.
    [71] Kai, W.; Zhu, B.; He, Y.; Inoue, Y. J. Polym. Sci. Polym. Phys. Ed 2005, 43, 2340.
    [72] Woo, E. M.; Mandal, T. K.; Lee, S. C. Colloid. Polym. Sci. 2000, 278, 1032.
    [73] Woo, E. M.; Wu, P. L. Colloid. Polym. Sci. 2006, 284, 357.
    [74] Crämer, K.; Santos Lima, M. F.; Magonov, S. N.; Hellmann, E. H.; Jacobs, M.; Hellmann, G. P. J. Mater. Sci. 1998, 33, 2305.
    [75] Braun, D.; Jacobs, M.; Hellmann, G. P. Polymer 1994, 35, 706.
    [76] Huang, Y. P.; Kuo. J. F.; Woo, E. M. Polym. Int. 2001, 51, 55.
    [77] Grevecoeur, G.; Groeninckx, G. Macromolecules 1991, 24, 1190.
    [78] Huang, Y. P.; Woo, E. M. Polymer 2001, 42, 6493.
    [79] Keith, H. D.; Padden, F. J. J. Appl. Phys. 1964, 35, 1270.
    [80] Keith, H. D.; Padden, F. J. J. Appl. Phys. 1964, 35, 1286.
    [81] Harris, J.E.; Goh, S. H.; Paul, D. R.; Barlow, J. W. J. Appl. Polym. Sci. 1982, 27, 839.
    [82] Shah, V.S.; Keith, J. D. Paul, D. R.; Barlow, J. W. J. Appl. Polym. Sci. 1986, 32, 3863.
    [83] Belfiore, L. A.; Qin, C.; Ueda, E.; Pires, A. T. N. J. Polym. Sci. Polym. Phys. Ed. 1993, 31, 409.
    [84] Sun, Y. S.; Woo, E. M.; Wu, M. C.; Ho, R. M. Polymer 2003, 44, 5293.
    [85] Tsuji, M.; Okihara, T.; Tosaka, M.; Kawaguchi, A.; Katayama, K.; MSA Bulletin 1993, 23, 57.
    [86] Tosaka, M.; Tsuji, M.; Kohjiya, S.; Cartier, L.; Lotz, B. Macromolecules 1999, 32, 4905.
    [87] Tosaka, M.; Endo, Y.; Murakami, S.; Tsuji, M.; Kohjiya, S. Sen’i Gakkaishi 2001, 57, 207.
    [88] Hall, I. H.; Ibrahim, B. A. Polymer 1982, 23, 805.
    [89] Wunderlich, B. Macromolecular Physics, Academic: New York 1976; V.1, 2 and 3.
    [90] Sun, Y. S.; Woo, E. M.; Wu, M. C.; Ho, R. M. Macromolecules 2003, 36, 8415.
    [91] Gupper, A.; Andrew Chan, K. L.; Kazarian, S. G. Macromolecules 2004, 37, 6498.
    [92] Yoshioka, A.; Tashiro, K. Polymer 2003, 44, 6681.
    [93] Yoshioka, A.; Tashiro, K. Macromolecules 2002, 35, 410.
    [94] Ray, B.; Elhasri, S.; Thierry, A.; Marie, P.; Guenet, J. M. Macromolecules 2002, 35, 9730.
    [95] Gorrasi, G.; Guadagno, L.; Vittoria, V. Colloid. Polym. Sci. 2003, 281, 469.
    [96] Kim, S. J.; Nam, J. Y.; Lee, Y. M.; Im, S. S. Polymer 1999, 40, 5623.
    [97] Im, S. S.; Lee, H. S. J. Appl. Polym. Sci. 1989, 37, 1801.
    [98] Ouyang, H.; Lee, W. H.; Shiue, S. T.; Lin, T. L. J. Polym. Sci. Part B 2002, 40, 1444.
    [99] Zhang, M. Q.; Ning, K. J.; Li, T. Q.; Zeng, H. M. J. Appl. Polym. Sci. 1999, 74, 3376.
    [100] Cornelis, H.; Kander, R. G.; Martin, J. P. Polymer 1996, 37, 4573.
    [101] Lotz, B.; Cheng, S. Z. D. Polymer 2005, 46, 577.
    [102] Keith, H. D.; Padden, F. J. J. Polym. Sci. 1959, 39, 123.
    [103] Keller, A. J. Polym. Sci. 1959, 39, 151.
    [104] Price, F. P. J. Polym. Sci. 1959, 39, 139.
    [105] Toda, A.; Arita, T.; Hikosaka, M. Polymer 2001, 42, 2223.
    [106] Bassett, D. C.; Hodge, A. M. Polymer 1978, 19, 469.
    [107] Bassett, D. C. J. Macromol. Sci. 2003, B42, 227.
    [108] Keith, H. D.; Padden, F. J. Polymer 1984, 25, 8.
    [109] Keith, H. D.; Padden, F. J. Macromolecules 1996, 29, 7776.
    [110] Schultz, J. M. Polymer 2003, 44, 433.
    [111] Kyu, T.; Chiu. H. W.; Guenther, A. J.; Okaba, Y.; Saito, H.; Inoue, T. Phys. Rev. Lett. 1999, 83, 2749.
    [112] Kunz, M.; Dreschler, M.; Moller, S. Polymer 1995, 36, 1331.
    [113] Geil, P. H. Polymer Single Crystals. New York: Wiley; 1963. Chapter 4, p. 225–230.
    [114] Keith, H. D.; Padden, F. J.; Lotz, B.; Wittmann, J. C. Macromolecules 1989, 22, 2230.
    [115] Avrami, M. J. Chem. Phys. 1949, 9, 177.
    [116] Keith, H. D.; Padden, Jr., F. J. J. Appl. Phys. 1964, 35, 1270.
    [117] Keith, H. D.; Padden, Jr., F. J. J. Appl. Phys. 1964, 35, 1286.
    [118] Keith, H. D.; Padden, Jr., F. J. J. Appl. Phys. 1963, 35, 2409.
    [119] Lotz, B.; Cheng, S. Z. D. Polymer 2005, 46, 577.
    [120] Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, K. I.; Harris, F. W.; Chien, L. C.; Yan, D.; He, T.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558.
    [121] Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, K. I.; Harris, F. W.; Chien, L. C.; Yan, D.; He, T.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72.
    [122] Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L. C.; Harris, F. W.; Lotz, B. Macromolecular 1999, 32, 524.
    [123] Weng, X.; Li, C. Y.;Jin, S.; Zhang, D.; Zhang, J. Z.; Bai, F.; Harris, F. W.; Cheng, S. Z. D.; Lotz, B. Macromolecular 2002, 35, 9678.
    [124] Wunderlich, B. J. Polym. Sci. Symp. 1973, 43, 29.
    [125] Gilbert, M.; Hybart, F. J. Polymer 1972, 13, 327.
    [126] Shimizu, T.; Tsuji, M.; Kohjiya, S. Sen’i Gakkaishi 2001, 57, 137.
    [127] Tsuji, M. In (Eds.; Sir Allen G. and Bevington J.C.) Comprehensive Polymer Science, Vol.1, (Vol. Eds.: Booth C. and Price C.), Chap.34, pp.785-840, Pergamon Press (1989).
    [128] Tsuji, M.; Kohjiya, S. Prog. Polym. Sci. 1995, 20, 259.
    [129] Tsuji, M.; Fujita, M. In Encyclopedia of Materials: Science and Technology, pp.7654-7664, Elsevier Sci., (2001).
    [130] Di Lorenzo, M. L. Prog. Polym. Sci. 2003, 28, 663.
    [131] Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto, Y.; Kokawa, R. Polymer 2001, 42, 7443.
    [132] Beers, K. L.; Douglas, J. F.; Amis, E. J.; Karim, A. Langmuir 2003, 19, 3935.
    [133] Yokoyama, E.; Kuroda, T. Phys. Rev. A 1990, 41, 2038.
    [134] Gonda, T.; Yamazaki, T. J. Cryst. Growth 1978, 45, 66.
    [135] Kuroda,T. J. Cryst. Growth 1983, 65, 27.

    下載圖示 校內:2007-07-17公開
    校外:2007-07-17公開
    QR CODE