| 研究生: |
吳明鍵 Wu, Ming-Chien |
|---|---|
| 論文名稱: |
半結晶性聚酯類高分子之多晶態、結晶相轉變及球晶型態之研究 Polymorphism, Crystal Phase Transitions and Spherulite Patterns in Semicrystalline Polyesters |
| 指導教授: |
吳逸謨
Woo, Eamor M. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 熔融行為 、聚對苯二甲酸二己酯 、X光 、微分掃描熱卡計 、多晶態 、聚己二酸二丁酯 、結晶 |
| 外文關鍵詞: | melting behavior, X-ray, DSC, crystal, polymorphism, poly(butylene adipate), poly(hexamethylene terephthalate) |
| 相關次數: | 點閱:132 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用廣角X光繞射儀、偏光顯微鏡、掃描式電子顯微鏡、穿透式電子顯微鏡及微分掃描熱卡計分析研究聚己二酸二丁酯 (poly(butylene adipate), PBA)和聚對苯二甲酸二己酯 (poly(hexametyhlene terephthalate), PHT)的多晶態及複雜的多融熔峰行為。進一步釐清PBA之多熔融峰機制與多晶態的關係,在比較高的的溫度下(31-35oC)熔融結晶或是從熔融態以較慢速度冷卻,會傾向形成較穩定的晶態;當在比較低的溫度下(25-28oC)熔融結晶則會形成晶態;而當PBA同時含有此兩種晶態時,升溫掃描的熔融過程則會顯示四個熔融峰。然而,若PBA初始僅含有晶態,則顯示P1和P3兩個熔融峰,相反的,若PBA僅含有晶態,經由升溫掃描顯示P2和P4兩個熔融峰。P2很明顯地和晶態的熔融有關,而顯的較寬廣的P4熔融峰,則是由於轉變為的晶態和再結晶之晶態的熔融重疊而形成。另外,對於態和態晶核於不同Tmax熔融熱處理,其對再結晶後的晶態影響也深入探討,當僅含態晶核的PBA以不同的Tmax熱處理至熔融態,態晶核殘留程度會不同且和Tmax有關。此外,不論初始的PBA是態或態,亦或是兩者共存,只有態晶核能夠在Tmax時的熔融態存在,如果PBA含有態晶核,則不會受結晶溫度Tc影響而再結晶為晶態。相反的,如果PBA在熔融態沒有任何晶核存在,晶態則會受到Tc的影響。
本論文的第二部分主要探討PBA的結晶型態。利用創新的實驗設計,得到一個球晶的中心部份和外圈分別為不同結晶型態,以此探討球晶型態、結晶、多晶態及熔融行為。這種含多重型態的球晶有兩種,其一為含消光環的外圈和無消光環的中心,另一種為含消光環的中心和無消光環的外殼,進一步證明最高熔點的P4 (約在55~57oC) 代表環狀球晶晶板的熔融。藉由這種球晶的設計及分析,對於會形成環狀球晶的多晶態聚酯提供一種方法釐清多晶態、環狀球晶及熔融行為之間的關係。此外,PBA與一不定型態的高分子混摻,以PBA/phenoxy的摻合系統深入研究結晶型態,在33oC下熔融結晶,初期會形成六角形型態,最後會形成像羽毛的結晶型態。
此外,針對PHT以氯仿(chloroform)所溶劑誘導出的結晶,也深入研究其多晶態、相轉變及結晶型態。在室溫以溶劑誘導下,PHT會形成態的結晶,以微分掃描熱卡計分析態結晶會顯示三個吸熱峰,第一個峰位於100~120oC之間,而且與其他兩個峰相較之下明顯較小。研究亦發現溶劑誘導的態結態會在125oC藉由固態-固態相轉變機制變為態。另外,廣角X光繞射儀結果顯示100~125oC之間態和態會共存,這樣的多晶態共存的結晶進一步以穿透式電子顯微鏡分析,經由電子繞射證明晶態和晶態會共同存在一個球晶內。
Polymorphic crystals and complex multiple melting behavior in polyesters, poly(butylene adipate) (PBA) and poly(hexamethylene terephthalate) (PHT), were thoroughly examined by wide-angle X-ray diffraction (WAXD), polarized-light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetery (DSC). Further clarification on mechanisms of multiple melting peaks related to polymorphic crystal forms in PBA was attempted. More stable -form crystal is normally favored for crystallization from melt at higher temperatures (31-35oC), or upon slow cooling from the melt; while the -form is the favored species for crystallization at low temperatures (25-28oC). PBA packed with both crystal forms could display as many as four melting peaks. However, PBA initially contained only the -crystal exhibited dual melting peaks of P1 and P3, which are attributed to dual lamellar distributions of the -crystal. By contrast, PBA initially contained only the -crystal could also exhibit dual melting peaks (P2 and P4) upon scanning. While P2 is clearly associated with melting of the initial -crystal, the fourth melting peak (P4), appearing rather broad, was determined to be associated with superimposed thermal events of crystal transformation from - to -crystal and final re-melting of the new re-organized -crystal. Effects of -form and -form nuclei on polymorphic morphology of PBA upon re-crystallization from molten states treated to various Tmax were also examined. As the PBA initially containing the sole -crystal was brought to a molten state of various Tmax, extents of trace -form crystal nuclei varied and were dependent on Tmax. Furthermore, it did not matter the PBA initially contained either - or -form crystals (or both) because only a single type of -nuclei could be left upon treatment to molten liquid state at Tmax. PBA crystallized with prior -nuclei could be packed with -crystal, regardless of temperature of Tc. Oppositely, for re-crystallization from molten PBA without any nuclei, the crystalline polymorphism was correspondingly influenced by Tc.
The second part of this thesis is to explore the crystal morphology in PBA. In-situ spherulitic morphology, crystals, polymorphism and melting behavior in PBA were conducted via a novel procedure of designing composite core-shell spherulites. Two patterns of such composite spherulites were developed and they consisted of (I) ring-shell with ringless-core, (II) ring-core encapsulated with ringless shell. Analysis specifically on the ring-shell portion (with the ringless core melted) further proved that this highest melting peak (P4 at 55~57oC) represented melting of the ring-band lamellae. Via the novel design of composite patterns in a compact spherulite, the polymorphic polyester with ring-band spherulites offered a unique opportunity for further clarifying the relationships between polymorphism, ring-band spherulite, and complex melting behavior in polymers. In addition, PBA was blended with various loading of an amorphous polymer. The PBA/phenoxy blend was used as a model system for investigation in greater details. Upon crystallization at Tc=33oC, unusual morphologies of hexagon crystals at early stages and feather-like dendritic lamellar bundles at final stage of crystallization were observed in all blends of PBA/amorphous polymer.
Additionally, the crystal polymorphism, transformation, and morphologies in chloroform solvent-cast PHT were researched. Solvent-induced crystallization of PHT at room temperature yielded an initial crystal of -form. Upon DSC scanning, the original -form in PHT exhibited three endothermic peaks. The first peak, much smaller than the other two, is in the temperature range of ca. 100~120oC. It was found that the solvent-induced -form was transformed to -form at 125oC via a solid-to-solid transformation mechanism. In addition, WAXD showed that - and -forms co-existed in the temperature range of 100-125oC. These mixed crystal forms were further identified using TEM, and the selected-area electron diffraction (ED) patterns revealed that both - and -form crystals co-existed and were packed within the same spherulite.
References
[1] Buchner, S.; Wiswe, D.; Zachmann, H. G. Polymer 1989, 30, 480.
[2] Vasanthan, N.; Salem, D. R. Macromolecules 1999, 32, 6319.
[3] Hong, B. K.; Jo, W. H.; Lee, S. C.; Kim, J. Polymer 1998, 39, 1793.
[4] Ju, M. -Y.; Huang, J. -M.; Chang, F. -C. Polymer 2002, 43, 2065.
[5] Chiba, T.; Asai, S.; Xu, W.; Sumta, M. J. Polym. Sci. Polym. Phys. 1999, 37, 561.
[6] Rosa, C. D.; Ballesteros, O. R. D.; Santoro, M.; Auriemma, F. Polymer 2003, 44, 6267.
[7] Li, Y.; He, J.; Qiang, W.; Hu, X. Polymer 2002, 43, 2489.
[8] Wang, C.; Hsu, Y. -C.; Lo, C. -F. Polymer 2001, 42, 8447.
[9] Lin, R. H.; Woo, E. M. Polymer 2000, 41, 121.
[10] Hong, P. -D.; Chung, W. -T.; Hsu, C. -F. Polymer 2002, 43, 3335.
[11] Wu, P. -L.; Woo, E. M. J. Polym. Sci. Polym. Phys. 2003, 41, 80.
[12] Ho, R. -M.; Ke, K. -Z.; Chen, M. Macromolecules 2000, 33, 7529.
[13] Chung, W. -T.; Hong P. -D.; Chuah, H. H. Polymer 2004, 45, 2413.
[14] Kim, H. G.; Robertson, R. E. J. Polym. Sci. Polym. Phys. 1998, 36, 1757.
[15] Park, C. S.; Lee, K. J.; Kim, S. W.; Lee, Y. K.; Nam, J. D. J. Appl. Poly. Sci. 2002, 86, 478.
[16] Wu, P L.; Woo, E. M.; Liu, H. -L. J. Polym. Sci. Polym. Phys. 2004, 42, 4421.
[17] Hall, I. H.; Pass, M. G.; Rammo, N. N. J. Polym. Sci. Polym. Phys. 1978, 16, 1409.
[18] Hall, I. H.; Pass, N. N. J. Polym. Sci. Polym. Phys. 1978, 16, 2189.
[19] Lefebvre, X.; Koch, M. H. J.; Reynaers, H.; David, C. J. Polym. Sci. Polym. Phys. 1999, 37, 1.
[20] Inomata, K.; Sasaki, S. J. Polym. Sci. Polym. Phys. 1996, 34, 83.
[21] Guerra, G.; Vitagliano, V. M.; De Rosa, C.; Petraccone, V.; Corradini, P; Macromolecules 1990, 23, 1539.
[22] Guerra, G.; Vitagliano, V. M.; De Rosa, C.; Petraccone, V.; Corradini, P. Macromolecules 1990, 23, 1539.
[23] De Rosa, C.; Rapacciuolo, M.; Guerra, G.; Petraccone, V.; Corradini, P. Polymer 1992, 33, 1423.
[24] De Rosa, C. Macromolecules 1996, 29, 8460.
[25] Woo, E. M.; Wu, F. S. J. Polym. Sci. Polym. Phys. 1998, 36, 2725.
[26] Sun, Y. S.; Woo, E. M. Macromolecules 1999, 32, 7836.
[27] Woo, E. M.; Sun, Y. S.; Yang, C. P. Prog. Polym. Sci. 2001, 26, 945.
[28] Bassett, D. C.; Olley, R. H.; Al Raheil, A. M. Polymer 1988, 29, 1745.
[29] Chen, C. Y.; Woo, E. M. Polymer J. 1995, 27, 361.
[30] Ko, T. Y.; Woo, E. M. Polymer 1996, 37, 1167.
[31] Phillips, R. A.; Jones, R. L. Macromol. Chem. Phys. 1992, 200, 1912.
[32] Penning, J. P.; Manley, R. S. J. Macromolecules 1996, 29, 77.
[33] Penning, J. P.; Manley, R. S. J. Macromolecules 1996, 29, 84.
[34] Rahman, M. H.; Nandi, A. K. Macromol. Chem. Phys. 2002, 203, 653.
[35] Saheb, D. N.; Jog, J. P. J. Polym. Sci. Polym. Phys. 1999, 37, 2439.
[36] Liu, A. S.; Liau, W. B.; Chiu, W. -Y. Macromolecules 1998, 31, 6593.
[37] Liau, W. B.; Liu, A. S.; Chiu, W. -Y. Macromol. Chem. Phys. 2002, 203, 294.
[38] Xiao, Q.; Yan, S.; Rogausch, K. D.; Petermann, J.; Huang, Y. J. Appl. Polym. Sci. 2001, 80, 1681.
[39] Keith, H. D.; Padden, F. J. ;Russell, T. P. Macromolecules 1989, 22, 666.
[40] Huang, Y.; Luo, X.; Ma, D. Eur. Polym. J. 2001, 37, 2153.
[41] Minke, R.; Blackwell, J. J. Macromol. Sci. Phys. 1979, B16, 407.
[42] Minke, R.; Blackwell, J. J. Macromol. Sci. Phys. 1980, B18, 233.
[43] Pouget, E.; Almontassir, A.; Casas, M. T.; Puiggali, J. Macromolecules 2003, 36, 698.
[44] Gan, Z.; Abe, H.; Doi, Y. Macromol. Chem. Phys. 2002, 203,2369.
[45] Handa, Y. P.; Zhang, Z.; Wong, B. Macromolecules 1997, 30, 8499.
[46] Sergio, B.; Stefano, V. M.; Vittorio, P.; Beniamino, P. Prog. Polym. Sci. 1991, 16, 361.
[47] Lotz, B. Polymer 1998, 39, 4561.
[48] Woo, E. M.; Wu, P, L.; Chiang, C. P. Liu, H. L. Macromol. Rapid. Commun. 2004, 25, 942.
[49] Palmer, A.; Poulin-Dandurand, S.; Revd, J. F.; Brisse, F. Eur. Polym. J. 1984, 20, 783.
[50] Brisse, F.; Palmer, A.; Moss, B.; Dorset, D.; Roughead, W. A.; Miller, D. P. Eur. Polym. J. 1984, 20, 791.
[51] Huang, S. J. in Encyclopedia of Polymer Science and Engineering, Wiley-Interscience: New York 1985, Vol. 2, p.220.
[52] Lyoo, W. E.; Kim, J. H.; Yoon, W. S.; Ji, B. C.; Lee, J.; Yang, S. B.; Yoo, Y.; Nam, H. D. J. Appl. Polym. Sci. 2001, 82, 1.
[53] Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Biomacromolecules 2004, 5, 371.
[54] Fillon, B.; Wittmann, J. C.; Lotz, B.; Thierry, A. J. Polym. Sci., Part B 1993, 31, 1383.
[55] Fillon, B.; Thierry, A.; Wittmann, J. C. J. Polym. Sci. Part B 1993, 31, 1407.
[56] Patrick, S. D.; Peggy, C.; Malcolm, C. J. Polym. Sci. Part B 2002, 40, 1644.
[57] Kefeng, W.; Kancheng, M.; Zhiwu, H.; Hanmin, Z. J. Appl. Polym. Sci. 2001, 81, 78.
[58] Cho, K.; Saheb, D. N.; Yang, H.; Kang, B. I.; Kim, J.; Lee, S. S. Polymer 2003, 44, 4053.
[59] Cho, K.; Saheb, D. N.; Choi, J.; Yang, H. Polymer 2002, 43, 1407.
[60] Supaphol, P.; Lin, J. S. Polymer 2001, 42, 9617.
[61] Supaphol, P.; Spruiell, E. J. Appl. Polym. Sci. 2000, 75, 337.
[62] Schneider, S.; Drujon, X.; Lotz, B.; Wittmann, J. C. Polymer 2001, 42, 8787.
[63] Lotz, B.; Wittmann, J. C.; Lovinger, A. J. Polymer 1996, 37, 4979.
[64] Bruckner, S.; Meille, S. V.; Petraccone, V.; Pirozzi, B. Prog. Polym. Sci. 1991, 16, 361.
[65] Woo, E. M.; Wu, M. C. J. Polym. Sci. Part B 2005, 43, 1662.
[66] Ho, R. M.; Lin, C. P.; Tsai, H. Y.; Woo, E. M. Macromolecules 2000, 33, 6517.
[67] Iwata, T.; Kobayashi, Tabata, K.; Yonezawa, N.; Doi, Y. Macromol. Biosci. 2004, 4, 296.
[68] Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Polym. Degrad. Stab. 2005, 87, 191.
[69] Wu, M. C.; Woo, E. M. Polym. Int. 2005, 54, 1681.
[70] Sun, Y.; Li, H.; Huang, Y.; Chen, E.; Zhao, L.; Gan, Z.; Yan, S. Macromolecules 2005, 38, 2739.
[71] Kai, W.; Zhu, B.; He, Y.; Inoue, Y. J. Polym. Sci. Polym. Phys. Ed 2005, 43, 2340.
[72] Woo, E. M.; Mandal, T. K.; Lee, S. C. Colloid. Polym. Sci. 2000, 278, 1032.
[73] Woo, E. M.; Wu, P. L. Colloid. Polym. Sci. 2006, 284, 357.
[74] Crämer, K.; Santos Lima, M. F.; Magonov, S. N.; Hellmann, E. H.; Jacobs, M.; Hellmann, G. P. J. Mater. Sci. 1998, 33, 2305.
[75] Braun, D.; Jacobs, M.; Hellmann, G. P. Polymer 1994, 35, 706.
[76] Huang, Y. P.; Kuo. J. F.; Woo, E. M. Polym. Int. 2001, 51, 55.
[77] Grevecoeur, G.; Groeninckx, G. Macromolecules 1991, 24, 1190.
[78] Huang, Y. P.; Woo, E. M. Polymer 2001, 42, 6493.
[79] Keith, H. D.; Padden, F. J. J. Appl. Phys. 1964, 35, 1270.
[80] Keith, H. D.; Padden, F. J. J. Appl. Phys. 1964, 35, 1286.
[81] Harris, J.E.; Goh, S. H.; Paul, D. R.; Barlow, J. W. J. Appl. Polym. Sci. 1982, 27, 839.
[82] Shah, V.S.; Keith, J. D. Paul, D. R.; Barlow, J. W. J. Appl. Polym. Sci. 1986, 32, 3863.
[83] Belfiore, L. A.; Qin, C.; Ueda, E.; Pires, A. T. N. J. Polym. Sci. Polym. Phys. Ed. 1993, 31, 409.
[84] Sun, Y. S.; Woo, E. M.; Wu, M. C.; Ho, R. M. Polymer 2003, 44, 5293.
[85] Tsuji, M.; Okihara, T.; Tosaka, M.; Kawaguchi, A.; Katayama, K.; MSA Bulletin 1993, 23, 57.
[86] Tosaka, M.; Tsuji, M.; Kohjiya, S.; Cartier, L.; Lotz, B. Macromolecules 1999, 32, 4905.
[87] Tosaka, M.; Endo, Y.; Murakami, S.; Tsuji, M.; Kohjiya, S. Sen’i Gakkaishi 2001, 57, 207.
[88] Hall, I. H.; Ibrahim, B. A. Polymer 1982, 23, 805.
[89] Wunderlich, B. Macromolecular Physics, Academic: New York 1976; V.1, 2 and 3.
[90] Sun, Y. S.; Woo, E. M.; Wu, M. C.; Ho, R. M. Macromolecules 2003, 36, 8415.
[91] Gupper, A.; Andrew Chan, K. L.; Kazarian, S. G. Macromolecules 2004, 37, 6498.
[92] Yoshioka, A.; Tashiro, K. Polymer 2003, 44, 6681.
[93] Yoshioka, A.; Tashiro, K. Macromolecules 2002, 35, 410.
[94] Ray, B.; Elhasri, S.; Thierry, A.; Marie, P.; Guenet, J. M. Macromolecules 2002, 35, 9730.
[95] Gorrasi, G.; Guadagno, L.; Vittoria, V. Colloid. Polym. Sci. 2003, 281, 469.
[96] Kim, S. J.; Nam, J. Y.; Lee, Y. M.; Im, S. S. Polymer 1999, 40, 5623.
[97] Im, S. S.; Lee, H. S. J. Appl. Polym. Sci. 1989, 37, 1801.
[98] Ouyang, H.; Lee, W. H.; Shiue, S. T.; Lin, T. L. J. Polym. Sci. Part B 2002, 40, 1444.
[99] Zhang, M. Q.; Ning, K. J.; Li, T. Q.; Zeng, H. M. J. Appl. Polym. Sci. 1999, 74, 3376.
[100] Cornelis, H.; Kander, R. G.; Martin, J. P. Polymer 1996, 37, 4573.
[101] Lotz, B.; Cheng, S. Z. D. Polymer 2005, 46, 577.
[102] Keith, H. D.; Padden, F. J. J. Polym. Sci. 1959, 39, 123.
[103] Keller, A. J. Polym. Sci. 1959, 39, 151.
[104] Price, F. P. J. Polym. Sci. 1959, 39, 139.
[105] Toda, A.; Arita, T.; Hikosaka, M. Polymer 2001, 42, 2223.
[106] Bassett, D. C.; Hodge, A. M. Polymer 1978, 19, 469.
[107] Bassett, D. C. J. Macromol. Sci. 2003, B42, 227.
[108] Keith, H. D.; Padden, F. J. Polymer 1984, 25, 8.
[109] Keith, H. D.; Padden, F. J. Macromolecules 1996, 29, 7776.
[110] Schultz, J. M. Polymer 2003, 44, 433.
[111] Kyu, T.; Chiu. H. W.; Guenther, A. J.; Okaba, Y.; Saito, H.; Inoue, T. Phys. Rev. Lett. 1999, 83, 2749.
[112] Kunz, M.; Dreschler, M.; Moller, S. Polymer 1995, 36, 1331.
[113] Geil, P. H. Polymer Single Crystals. New York: Wiley; 1963. Chapter 4, p. 225–230.
[114] Keith, H. D.; Padden, F. J.; Lotz, B.; Wittmann, J. C. Macromolecules 1989, 22, 2230.
[115] Avrami, M. J. Chem. Phys. 1949, 9, 177.
[116] Keith, H. D.; Padden, Jr., F. J. J. Appl. Phys. 1964, 35, 1270.
[117] Keith, H. D.; Padden, Jr., F. J. J. Appl. Phys. 1964, 35, 1286.
[118] Keith, H. D.; Padden, Jr., F. J. J. Appl. Phys. 1963, 35, 2409.
[119] Lotz, B.; Cheng, S. Z. D. Polymer 2005, 46, 577.
[120] Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, K. I.; Harris, F. W.; Chien, L. C.; Yan, D.; He, T.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558.
[121] Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, K. I.; Harris, F. W.; Chien, L. C.; Yan, D.; He, T.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72.
[122] Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L. C.; Harris, F. W.; Lotz, B. Macromolecular 1999, 32, 524.
[123] Weng, X.; Li, C. Y.;Jin, S.; Zhang, D.; Zhang, J. Z.; Bai, F.; Harris, F. W.; Cheng, S. Z. D.; Lotz, B. Macromolecular 2002, 35, 9678.
[124] Wunderlich, B. J. Polym. Sci. Symp. 1973, 43, 29.
[125] Gilbert, M.; Hybart, F. J. Polymer 1972, 13, 327.
[126] Shimizu, T.; Tsuji, M.; Kohjiya, S. Sen’i Gakkaishi 2001, 57, 137.
[127] Tsuji, M. In (Eds.; Sir Allen G. and Bevington J.C.) Comprehensive Polymer Science, Vol.1, (Vol. Eds.: Booth C. and Price C.), Chap.34, pp.785-840, Pergamon Press (1989).
[128] Tsuji, M.; Kohjiya, S. Prog. Polym. Sci. 1995, 20, 259.
[129] Tsuji, M.; Fujita, M. In Encyclopedia of Materials: Science and Technology, pp.7654-7664, Elsevier Sci., (2001).
[130] Di Lorenzo, M. L. Prog. Polym. Sci. 2003, 28, 663.
[131] Taguchi, K.; Miyaji, H.; Izumi, K.; Hoshino, A.; Miyamoto, Y.; Kokawa, R. Polymer 2001, 42, 7443.
[132] Beers, K. L.; Douglas, J. F.; Amis, E. J.; Karim, A. Langmuir 2003, 19, 3935.
[133] Yokoyama, E.; Kuroda, T. Phys. Rev. A 1990, 41, 2038.
[134] Gonda, T.; Yamazaki, T. J. Cryst. Growth 1978, 45, 66.
[135] Kuroda,T. J. Cryst. Growth 1983, 65, 27.