簡易檢索 / 詳目顯示

研究生: 吳榆蓁
Wu, Yu-Zhen
論文名稱: 探討核醣體蛋白L19在癌症病變過程中所扮演的功能性角色
To identify the functional role of ribosomal protein L19 (RPL19) in the cancer development
指導教授: 曾大千
Tseng, Ta-Chien Joseph
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 核醣體蛋白核醣體定位分析技術內部核醣體結合位
外文關鍵詞: ribosomal proteins, internal ribosome entry site, ribosome profiling
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 轉譯作用由核醣體執行,負責決定基因在細胞中的表現情形。核醣體的組成一直被認為具有高度保留性,然而,近年來的研究卻顯示核醣體蛋白(ribosomal proteins)在不同組織的表現情形有所差異,且會導致特定mRNA優先被轉譯。核醣體蛋白L19 (RPL19)已被報導為前列腺癌和大腸直腸癌的預後指標,且改變RPL19的表現會影響轉譯的精確度及癌細胞的侵略性表現,但RPL19所參與的轉譯調控機制卻仍是未知。在我們先前的研究中,在子宮頸癌細胞Hela內,利用核醣體定位分析技術發現RPL19的差異表現會影響S-phase相關基因的轉譯表現。接著,我們透過預測內部核醣體結合位的資料庫挑出兩個目標基因,並利用雙螢光素酶報導基因分析其IRES活性。我們發現目標基因在Hela中的確具有IRES活性,並且其活性隨著減少RPL19表現而下降。有趣的是,在大腸直腸癌細胞SW480中也呈現相同的結果。因此我們推測在其他癌症的病變過程中或許也存在著相似的RPL19所調控之轉譯機制,於是利用核醣體定位分析技術研究在SW480中基因的表達情形。希望透過這兩種不同的癌症模型,可以進一步釐清RPL19所參與在癌症病變過程中的功能性角色。

    The translational regulation mechanism determines the gene expression pattern in cells. Traditionally, the components of ribosome were regard as a highly conserved complex. However, recent studies reveal the expressions of some ribosomal proteins (RPs) vary in different tissues and lead to preferentially translate specific mRNAs. Ribosomal protein L19 (RPL19) has been reported to be a prognostic marker for prostate cancer as well as colorectal cancer. Downregulation of RPL19 would decrease the fidelity of translation and abrogate the aggressive phenotype of cancer. However, the underlying mechanism of RPL19 participating in translation is unclear. In our previous study, we proved reducing the expression of RPL19 affected the expression of S-phase related genes in Hela cells. We selected two of S-phase related genes according to internal ribosome entry site (IRES) prediction database and tested the IRES activity of their 5’UTR by dual reporter assay. We found that these genes indeed carry the IRES activity in Hela cells, and the IRES activity would be decreased with RPL19 knockdown. Intriguingly, the same results also demonstrated in SW480, the colorectal cancer cell line. To further validate the translational mechanism regulated by RPL19 also involved in the progress of other cancers, we explored the change of ribosome binding pattern in SW480 by ribosome profiling. Utilizing the two distinct cancer cell line, we try to further explore the functional role of RPL19 in the progression of cancer.

    目錄 中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 附圖目錄 XIII 縮寫表 XIV 中英對照表 XVI 一、研究背景 1 1-1 分子生物學的中心法則 1 1-2 真核生物內的轉譯機制 2 1-3 核醣體的組成成分與生合成 5 1-4 核醣體蛋白的功能 6 1-5 核醣體蛋白L19的功能 8 1-6 特殊化核醣體 9 1-7 核醣體定位分析技術的應用 10 1-8 研究目的 11 二、材料與方法 13 2-1 材料 13 2-2 方法 17 三、結果 24 3-1 RPL19調控PCNA及CDK2的轉譯表現 24 3-2 在Hela細胞中PCNA及CDK2具有顯著的IRES活性且受RPL19所調控 25 3-3 RPL19協同hnRNP A1調控CDK2的內部核醣體結合位依賴型轉譯 25 3-4 PCNA及CDK2在大腸直腸癌細胞SW480中同樣具有顯著的IRES活性且受RPL19所調控 26 3-5 RPL19參與在癌症病變過程中 27 3-6 RPL19參與在調控細胞週期的運行 28 四、討論 30 4-1 PCNA與CDK2在細胞中的功能性角色 30 4-2 hnRNP A1對目標基因的調控 32 4-3 核醣核酸結合蛋白HuR在RPL19所參與的轉譯調控機制中扮演的角色 32 4-4 結論 34 參考文獻 35 圖表 53 附圖 77

    葉凡綺,利用核醣體定位技術探討核醣體蛋白L19在轉譯調控中的功能,國立成功大學生物科技與產業科學系碩士論文,2018。
    鍾秉翰,核醣體蛋白L19結合到週期素D1五端非轉譯區內之核醣體結合區來調控週期素D1蛋白質表現與細胞週期進行,國立成功大學生物資訊與訊息傳遞研究所碩士論文,2012。
    Akiri, G., Nahari, D., Finkelstein, Y., Le, S.Y., Elroy-Stein, O., and Levi, B.Z. Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 17, 227-236, 1998.
    Al-Ali, R., and Gonzalez-Sarmiento, R. Proximity of AUG sequences to initiation codon in genomic 5' UTR regulates mammalian protein expression. Gene 594, 268-271, 2016.
    Ali, M.U., Ur Rahman, M.S., Jia, Z., and Jiang, C. Eukaryotic translation initiation factors and cancer. Tumor Biology 39, 1-19, 2017.
    Armistead, J., and Triggs-Raine, B. Diverse diseases from a ubiquitous process: the ribosomopathy paradox. Federation of European Biochemical Societies Letters 588, 1491-1500, 2014.
    Au, P.C., Helliwell, C., and Wang, M.B. Characterizing RNA-protein interaction using cross-linking and metabolite supplemented nuclear RNA-immunoprecipitation. Molecular Biology Reports 41, 2971-2977, 2014.
    Baird, S.D., Turcotte, M., Korneluk, R.G., and Holcik, M. Searching for IRES. RNA 12, 1755-1785, 2006.
    Barna, M., Pusic, A., Zollo, O., Costa, M., Kondrashov, N., Rego, E., Rao, P.H., and Ruggero, D. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456, 971-975, 2008.
    Bee, A., Brewer, D., Beesley, C., Dodson, A., Forootan, S., Dickinson, T., Gerard, P., Lane, B., Yao, S., Cooper, C.S., Djamgoz, M.B., Gosden, C.M., Ke, Y., and Foster, C.S. siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. PLoS One 6, e22672, 2011.
    Bee, A., Ke, Y., Forootan, S., Lin, K., Beesley, C., Forrest, S.E., and Foster, C.S. Ribosomal protein l19 is a prognostic marker for human prostate cancer. Clinical Cancer Research 12, 2061-2065, 2006.
    Ben-Shem, A., Jenner, L., Yusupova, G., and Yusupov, M. Crystal structure of the eukaryotic ribosome. Science 330, 1203-1209, 2010.
    Bert, A.G., Grepin, R., Vadas, M.A., and Goodall, G.J. Assessing IRES activity in the HIF-1alpha and other cellular 5' UTRs. RNA 12, 1074-1083, 2006.
    Brombin, A., Joly, J.S., and Jamen, F. New tricks for an old dog: ribosome biogenesis contributes to stem cell homeostasis. Current Opinion in Genetics and Development 34, 61-70, 2015.
    Budkevich, T.V., El'skaya, A.V., and Nierhaus, K.H. Features of 80S mammalian ribosome and its subunits. Nucleic Acids Research 36, 4736-4744, 2008.
    Cech, T.R. A Lifelong Passion for All Things Ribonucleic. Cell 175, 14-17, 2018.
    Chang, K.C., Wen, J.D., and Yang, L.W. Functional Importance of Mobile Ribosomal Proteins. BioMed Research International 2015, 1-11, 2015.
    Chen, B., Zhang, W., Gao, J., Chen, H., Jiang, L., Liu, D., Cao, Y., Zhao, S., Qiu, Z., Zeng, J., Zhang, S., and Li, W. Downregulation of ribosomal protein S6 inhibits the growth of non-small cell lung cancer by inducing cell cycle arrest, rather than apoptosis. Cancer Letters 354, 378-389, 2014.
    Chen, D., Zhang, Z., Li, M., Wang, W., Li, Y., Rayburn, E.R., Hill, D.L., Wang, H., and Zhang, R. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 26, 5029-5037, 2007.
    Chen, F.W., and Ioannou, Y.A. Ribosomal proteins in cell proliferation and apoptosis. International Reviews of Immunology 18, 429-448, 1999.
    Chen, H.H., Yu, H.I., Yang, M.H., and Tarn, W.Y. DDX3 Activates CBC-eIF3-Mediated Translation of uORF-Containing Oncogenic mRNAs to Promote Metastasis in HNSCC. Cancer Research 78, 4512-4523, 2018.
    Chohan, T.A., Qian, H., Pan, Y., and Chen, J.Z. Cyclin-dependent kinase-2 as a target for cancer therapy: progress in the development of CDK2 inhibitors as anti-cancer agents. Current Medicinal Chemistry 22, 237-263, 2015.
    Crick, F. On protein synthesis. Symposia of the Society for Experimental Biology 12, 138-163, 1958.
    Crick, F. Central dogma of molecular biology. Nature 227, 561-563, 1970.
    Dalley, B.K., Baird, L., and Howard, M.T. Studying Selenoprotein mRNA Translation Using RNA-Seq and Ribosome Profiling. Methods in Molecular Biology 1661, 103-123, 2018.
    Damiano, F., Rochira, A., Tocci, R., Alemanno, S., Gnoni, A., and Siculella, L. hnRNP A1 mediates the activation of the IRES-dependent SREBP-1a mRNA translation in response to endoplasmic reticulum stress. Biochemical Journal 449, 543-553, 2013.
    Davies, B., and Fried, M. The L19 ribosomal protein gene (RPL19): gene organization, chromosomal mapping, and novel promoter region. Genomics 25, 372-380, 1995.
    De Keersmaecker, K., Atak, Z.K., Li, N., Vicente, C., Patchett, S., Girardi, T., Gianfelici, V., Geerdens, E., Clappier, E., Porcu, M., Lahortiga, I., Luca, R., Yan, J., Hulselmans, G., Vranckx, H., Vandepoel, R., Sweron, B., Jacobs, K., Mentens, N., Wlodarska, I., Cauwelier, B., Cloos, J., Soulier, J., Uyttebroeck, A., Bagni, C., Hassan, B.A., Vandenberghe, P., Johnson, A.W., Aerts, S., and Cools, J. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nature Genetics 45, 186-190, 2013.
    de la Cruz, J., Karbstein, K., and Woolford, J.L., Jr. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annual Review of Biochemistry 84, 93-129, 2015.
    Derenzini, M., Montanaro, L., and Trere, D. Ribosome biogenesis and cancer. Acta Histochemica 119, 190-197, 2017.
    Dinman, J.D. Pathways to Specialized Ribosomes: The Brussels Lecture. Journal of Molecular Biology 428, 2186-2194, 2016.
    Doller, A., Akool el, S., Huwiler, A., Muller, R., Radeke, H.H., Pfeilschifter, J., and Eberhardt, W. Posttranslational modification of the AU-rich element binding protein HuR by protein kinase Cdelta elicits angiotensin II-induced stabilization and nuclear export of cyclooxygenase 2 mRNA. Molecular and Cellular Biology 28, 2608-2625, 2008.
    Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T.N., Dianzani, I., Ball, S., Tchernia, G., Klar, J., Matsson, H., Tentler, D., Mohandas, N., Carlsson, B., and Dahl, N. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature Genetics 21, 169-175, 1999.
    Dressman, M.A., Baras, A., Malinowski, R., Alvis, L.B., Kwon, I., Walz, T.M., and Polymeropoulos, M.H. Gene expression profiling detects gene amplification and differentiates tumor types in breast cancer. Cancer Research 63, 2194-2199, 2003.
    Durie, D., Lewis, S.M., Liwak, U., Kisilewicz, M., Gorospe, M., and Holcik, M. RNA-binding protein HuR mediates cytoprotection through stimulation of XIAP translation. Oncogene 30, 1460-1469, 2011.
    Gallouzi, I.E., and Steitz, J.A. Delineation of mRNA export pathways by the use of cell-permeable peptides. Science 294, 1895-1901, 2001.
    Gary, R., Ludwig, D.L., Cornelius, H.L., MacInnes, M.A., and Park, M.S. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. The Journal of Biological Chemistry 272, 24522-24529, 1997.
    Gebauer, F., and Hentze, M.W. Molecular mechanisms of translational control. Nature Reviews Molecular Cell Biology 5, 827-835, 2004.
    Genuth, N.R., and Barna, M. The Discovery of Ribosome Heterogeneity and Its Implications for Gene Regulation and Organismal Life. Molecular Cell 71, 364-374, 2018.
    Gerbasi, V.R., and Link, A.J. The myotonic dystrophy type 2 protein ZNF9 is part of an ITAF complex that promotes cap-independent translation. Molecular and Cellular Proteomics 6, 1049-1058, 2007.
    Gobet, C., and Naef, F. Ribosome profiling and dynamic regulation of translation in mammals. Current Opinion in Genetics and Development 43, 120-127, 2017.
    Godet, A.C., David, F., Hantelys, F., Tatin, F., Lacazette, E., Garmy-Susini, B., and Prats, A.C. IRES Trans-Acting Factors, Key Actors of the Stress Response. International Journal of Molecular Sciences 20, 1-29, 2019.
    Graber, T.E., and Holcik, M. Cap-independent regulation of gene expression in apoptosis. Molecular BioSystems 3, 825-834, 2007.
    Guimaraes, J.C., and Zavolan, M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biology 17, 1-13, 2016.
    Guo, H. Specialized ribosomes and the control of translation. Biochemical Society Transactions 46, 855-869, 2018.
    Han, Y., and He, Y. Eukaryotic transcription initiation machinery visualized at molecular level. Transcription 7, 203-208, 2016.
    Haracska, L., Unk, I., Johnson, R.E., Phillips, B.B., Hurwitz, J., Prakash, L., and Prakash, S. Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA. Molecular and Cellular Biology 22, 784-791, 2002.
    Hausser, J., Mayo, A., Keren, L., and Alon, U. Central dogma rates and the trade-off between precision and economy in gene expression. Nature Communications 10, 1-15, 2019.
    Hertz, M.I., Landry, D.M., Willis, A.E., Luo, G., and Thompson, S.R. Ribosomal protein S25 dependency reveals a common mechanism for diverse internal ribosome entry sites and ribosome shunting. Molecular and Cellular Biology 33, 1016-1026, 2013.
    Hindmarch, C., Yao, S., Beighton, G., Paton, J., and Murphy, D. A comprehensive description of the transcriptome of the hypothalamoneurohypophyseal system in euhydrated and dehydrated rats. Proceedings of the National Academy of Sciences of the United States of America 103, 1609-1614, 2006.
    Hinnebusch, A.G., Ivanov, I.P., and Sonenberg, N. Translational control by 5'-untranslated regions of eukaryotic mRNAs. Science 352, 1413-1416, 2016.
    Holcik, M., and Sonenberg, N. Translational control in stress and apoptosis. Nature Reviews Molecular Cell Biology 6, 318-327, 2005.
    Hondermarck, H. Proteogenomics Gets onto the Regulation of mRNA Decoding and Translation into Protein. Proteomics 17, 1-2, 2017.
    Hong, M., Kim, H., and Kim, I. Ribosomal protein L19 overexpression activates the unfolded protein response and sensitizes MCF7 breast cancer cells to endoplasmic reticulum stress-induced cell death. Biochemical and Biophysical Research Communications 450, 673-678, 2014.
    Huang, C.J., Chien, C.C., Yang, S.H., Chang, C.C., Sun, H.L., Cheng, Y.C., Liu, C.C., Lin, S.C., and Lin, C.M. Faecal ribosomal protein L19 is a genetic prognostic factor for survival in colorectal cancer. Journal of Cellular and Molecular Medicine 12, 1936-1943, 2008.
    Ingolia, N.T. Ribosome Footprint Profiling of Translation throughout the Genome. Cell 165, 22-33, 2016.
    Ingolia, N.T., Brar, G.A., Rouskin, S., McGeachy, A.M., and Weissman, J.S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protocols 7, 1534-1550, 2012.
    Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., and Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218-223, 2009.
    Ingolia, N.T., Hussmann, J.A., and Weissman, J.S. Ribosome Profiling: Global Views of Translation. Cold Spring Harbor Perspectives in Biology 11, 1-20, 2019.
    Jang, S.K., Krausslich, H.G., Nicklin, M.J., Duke, G.M., Palmenberg, A.C., and Wimmer, E. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of Virology 62, 2636-2643, 1988.
    Jo, O.D., Martin, J., Bernath, A., Masri, J., Lichtenstein, A., and Gera, J. Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. The Journal of Biological Chemistry 283, 23274-23287, 2008.
    Jopling, C.L., and Willis, A.E. N-myc translation is initiated via an internal ribosome entry segment that displays enhanced activity in neuronal cells. Oncogene 20, 2664-2670, 2001.
    Juba, A.N., Chaput, J.C., and Wellensiek, B.P. Exploring the Role of AUG Triplets in Human Cap-Independent Translation Enhancing Elements. Biochemistry 57, 6308-6318, 2018.
    Juli, G., Gismondi, A., Monteleone, V., Caldarola, S., Iadevaia, V., Aspesi, A., Dianzani, I., Proud, C.G., and Loreni, F. Depletion of ribosomal protein S19 causes a reduction of rRNA synthesis. Scientific Reports 6, 1-10, 2016.
    Jurikova, M., Danihel, L., Polak, S., and Varga, I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochemica 118, 544-552, 2016.
    Kampen, K.R., Sulima, S.O., Verbelen, B., Girardi, T., Vereecke, S., Rinaldi, G., Verbeeck, J., Op de Beeck, J., Uyttebroeck, A., Meijerink, J.P.P., Moorman, A.V., Harrison, C.J., Spincemaille, P., Cools, J., Cassiman, D., Fendt, S.M., Vermeersch, P., and De Keersmaecker, K. The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation in T-ALL. Leukemia 33, 319-332, 2019.
    Kankkunen, P., Teirila, L., Rintahaka, J., Alenius, H., Wolff, H., and Matikainen, S. (1,3)-beta-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. The Journal of Immunology 184, 6335-6342, 2010.
    Khatter, H., Myasnikov, A.G., Natchiar, S.K., and Klaholz, B.P. Structure of the human 80S ribosome. Nature 520, 640-645, 2015.
    Kieft, J.S. Viral IRES RNA structures and ribosome interactions. Trends in Biochemical Sciences 33, 274-283, 2008.
    King, H.A., Cobbold, L.C., and Willis, A.E. The role of IRES trans-acting factors in regulating translation initiation. Biochemical Society Transactions 38, 1581-1586, 2010.
    King, H.A., and Gerber, A.P. Translatome profiling: methods for genome-scale analysis of mRNA translation. Briefings in Functional Genomics 15, 22-31, 2016.
    Knoll, E.R., Zhu, Z.I., Sarkar, D., Landsman, D., and Morse, R.H. Role of the pre-initiation complex in Mediator recruitment and dynamics. Elife 7, 1-23, 2018.
    Kolekar, P., Pataskar, A., Kulkarni-Kale, U., Pal, J., and Kulkarni, A. IRESPred: Web Server for Prediction of Cellular and Viral Internal Ribosome Entry Site (IRES). Scientific Reports 6, 1-7, 2016.
    Korobeinikova, A.V., Garber, M.B., and Gongadze, G.M. Ribosomal proteins: structure, function, and evolution. Biochemistry (Moscow) 77, 562-574, 2012.
    Kuhn, C.D. RNA versatility governs tRNA function: Why tRNA flexibility is essential beyond the translation cycle. Bioessays 38, 465-473, 2016.
    Kullmann, M., Gopfert, U., Siewe, B., and Hengst, L. ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5'UTR. Genes and Development 16, 3087-3099, 2002.
    Kuroda, K., Takenoyama, M., Baba, T., Shigematsu, Y., Shiota, H., Ichiki, Y., Yasuda, M., Uramoto, H., Hanagiri, T., and Yasumoto, K. Identification of ribosomal protein L19 as a novel tumor antigen recognized by autologous cytotoxic T lymphocytes in lung adenocarcinoma. Cancer Science 101, 46-53, 2010.
    Le, S.Y., and Maizel, J.V. A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs. Nucleic Acids Research 25, 362-369, 1997.
    Lewis, S.M., and Holcik, M. For IRES trans-acting factors, it is all about location. Oncogene 27, 1033-1035, 2008.
    Licursi, M., Christian, S.L., Pongnopparat, T., and Hirasawa, K. In vitro and in vivo comparison of viral and cellular internal ribosome entry sites for bicistronic vector expression. Gene Therapy 18, 631-636, 2011.
    Lin, G.L., Ting, H.J., Tseng, T.C., Juang, V., and Lo, Y.L. Modulation of the mRNA-binding protein HuR as a novel reversal mechanism of epirubicin-triggered multidrug resistance in colorectal cancer cells. PLoS One 12, e0185625, 2017.
    Lin, J.Y., Brewer, G., and Li, M.L. HuR and Ago2 Bind the Internal Ribosome Entry Site of Enterovirus 71 and Promote Virus Translation and Replication. PLoS One 10, e0140291, 2015.
    Lindstrom, M.S. Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochemical and Biophysical Research Communications 379, 167-170, 2009.
    Lozano, G., Francisco-Velilla, R., and Martinez-Salas, E. Deconstructing internal ribosome entry site elements: an update of structural motifs and functional divergences. Open Biology 8, 1-11, 2018.
    Lu, H., Zhu, Y.F., Xiong, J., Wang, R., and Jia, Z. Potential extra-ribosomal functions of ribosomal proteins in Saccharomyces cerevisiae. Microbiological Research 177, 28-33, 2015.
    Lu, P., Vogel, C., Wang, R., Yao, X., and Marcotte, E.M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnology 25, 117-124, 2007.
    Luft, F. The rise of a ribosomopathy and increased cancer risk. Journal of Molecular Medicine 88, 1-3, 2010.
    Luo, S., Zhao, J., Fowdur, M., Wang, K., Jiang, T., and He, M. Highly expressed ribosomal protein L34 indicates poor prognosis in osteosarcoma and its knockdown suppresses osteosarcoma proliferation probably through translational control. Scientific Reports 6, 1-14, 2016.
    Malkas, L.H., Herbert, B.S., Abdel-Aziz, W., Dobrolecki, L.E., Liu, Y., Agarwal, B., Hoelz, D., Badve, S., Schnaper, L., Arnold, R.J., Mechref, Y., Novotny, M.V., Loehrer, P., Goulet, R.J., and Hickey, R.J. A cancer-associated PCNA expressed in breast cancer has implications as a potential biomarker. Proceedings of the National Academy of Sciences of the United States of America 103, 19472-19477, 2006.
    Marcel, V., Catez, F., and Diaz, J.J. Ribosome heterogeneity in tumorigenesis: the rRNA point of view. Molecular and Cellular Oncology 2, 1-3, 2015.
    Mathews, M.B., Bernstein, R.M., Franza, B.R., and Garrels, J.I. Identity of the proliferating cell nuclear antigen and cyclin. Nature 309, 374-376, 1984.
    Meng, Z., King, P.H., Nabors, L.B., Jackson, N.L., Chen, C.Y., Emanuel, P.D., and Blume, S.W. The ELAV RNA-stability factor HuR binds the 5'-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation. Nucleic Acids Research 33, 2962-2979, 2005.
    Mihara, M., Shintani, S., Nakahara, Y., Kiyota, A., Ueyama, Y., Matsumura, T., and Wong, D.T. Overexpression of CDK2 is a prognostic indicator of oral cancer progression. Japanese Journal of Cancer Research 92, 352-360, 2001.
    Mitchell, S.A., Brown, E.C., Coldwell, M.J., Jackson, R.J., and Willis, A.E. Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Molecular and Cellular Biology 21, 3364-3374, 2001.
    Mokrejs, M., Masek, T., Vopalensky, V., Hlubucek, P., Delbos, P., and Pospisek, M. IRESite--a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Research 38, 131-136, 2010.
    Moore, P.B., and Steitz, T.A. The structural basis of large ribosomal subunit function. Annual Review of Biochemistry 72, 813-850, 2003.
    Moran, G., Stokes, C., Thewes, S., Hube, B., Coleman, D.C., and Sullivan, D. Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology 150, 3363-3382, 2004.
    Muers, M. Gene expression: Transcriptome to proteome and back to genome. Nature Reviews Genetics 12, 518, 2011.
    Mukherjee, N., Corcoran, D.L., Nusbaum, J.D., Reid, D.W., Georgiev, S., Hafner, M., Ascano, M., Tuschl, T., Ohler, U., and Keene, J.D. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Molecular Cell 43, 327-339, 2011.
    Nakhoul, H., Ke, J., Zhou, X., Liao, W., Zeng, S.X., and Lu, H. Ribosomopathies: mechanisms of disease. Clinical Medicine Insights: Blood Disorders 7, 7-16, 2014.
    Nanbru, C., Lafon, I., Audigier, S., Gensac, M.C., Vagner, S., Huez, G., and Prats, A.C. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. The Journal of Biological Chemistry 272, 32061-32066, 1997.
    Narla, A., and Ebert, B.L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196-3205, 2010.
    Nissen, P., Hansen, J., Ban, N., Moore, P.B., and Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930, 2000.
    Paolini, N.A., Moore, K.S., di Summa, F.M., Fokkema, I., t Hoen, P.A.C., and von Lindern, M. Ribosome profiling uncovers selective mRNA translation associated with eIF2 phosphorylation in erythroid progenitors. PLoS One 13, e0193790, 2018.
    Pelletier, J., and Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325, 1988.
    Pena, C., Hurt, E., and Panse, V.G. Eukaryotic ribosome assembly, transport and quality control. Nature Structural and Molecular Biology 24, 689-699, 2017.
    Pines, J. Cyclins: wheels within wheels. Cell Growth and Differentiation 2, 305-310, 1991.
    Reiter, A.K., Anthony, T.G., Anthony, J.C., Jefferson, L.S., and Kimball, S.R. The mTOR signaling pathway mediates control of ribosomal protein mRNA translation in rat liver. The International Journal of Biochemistry and Cell Biology 36, 2169-2179, 2004.
    Reuveni, S., Ehrenberg, M., and Paulsson, J. Ribosomes are optimized for autocatalytic production. Nature 547, 293-297, 2017.
    Robledo, S., Idol, R.A., Crimmins, D.L., Ladenson, J.H., Mason, P.J., and Bessler, M. The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA 14, 1918-1929, 2008.
    Roeder, R.G. The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends in Biochemical Sciences 16, 402-408, 1991.
    Romero-Lopez, C., Barroso-delJesus, A., and Berzal-Herranz, A. The chaperone-like activity of the hepatitis C virus IRES and CRE elements regulates genome dimerization. Scientific Reports 7, 1-15, 2017.
    Roux, P.P., Shahbazian, D., Vu, H., Holz, M.K., Cohen, M.S., Taunton, J., Sonenberg, N., and Blenis, J. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. The Journal of Biological Chemistry 282, 14056-14064, 2007.
    Roux, P.P., and Topisirovic, I. Signaling Pathways Involved in the Regulation of mRNA Translation. Molecular and Cellular Biology 38, 1-26, 2018.
    Ryu, I., and Kim, Y.K. Translation initiation mediated by nuclear cap-binding protein complex. BMB Reports 50, 186-193, 2017.
    Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M. Global quantification of mammalian gene expression control. Nature 473, 337-342, 2011.
    Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M. Corrigendum: Global quantification of mammalian gene expression control. Nature 495, 126-127, 2013.
    Shi, Z., Fujii, K., Kovary, K.M., Genuth, N.R., Rost, H.L., Teruel, M.N., and Barna, M. Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide. Molecular Cell 67, 71-83, 2017.
    Simsek, D., Tiu, G.C., Flynn, R.A., Byeon, G.W., Leppek, K., Xu, A.F., Chang, H.Y., and Barna, M. The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity. Cell 169, 1051-1065, 2017.
    Skibbens, R.V., Corson, L.B., Koshland, D., and Hieter, P. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes and Development 13, 307-319, 1999.
    Spilka, R., Ernst, C., Mehta, A.K., and Haybaeck, J. Eukaryotic translation initiation factors in cancer development and progression. Cancer Letters 340, 9-21, 2013.
    Spriggs, K.A., Stoneley, M., Bushell, M., and Willis, A.E. Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biology of the Cell 100, 27-38, 2008.
    Stedman, A., Beck-Cormier, S., Le Bouteiller, M., Raveux, A., Vandormael-Pournin, S., Coqueran, S., Lejour, V., Jarzebowski, L., Toledo, F., Robine, S., and Cohen-Tannoudji, M. Ribosome biogenesis dysfunction leads to p53-mediated apoptosis and goblet cell differentiation of mouse intestinal stem/progenitor cells. Cell Death and Differentiation 22, 1865-1876, 2015.
    Stoneley, M., Subkhankulova, T., Le Quesne, J.P., Coldwell, M.J., Jopling, C.L., Belsham, G.J., and Willis, A.E. Analysis of the c-myc IRES; a potential role for cell-type specific trans-acting factors and the nuclear compartment. Nucleic Acids Research 28, 687-694, 2000.
    Tang, Z., Li, L., Tang, Y., Xie, D., Wu, K., Wei, W., and Xiao, Q. CDK2 positively regulates aerobic glycolysis by suppressing SIRT5 in gastric cancer. Cancer Science 109, 2590-2598, 2018.
    Tesena, P., Korchunjit, W., Taylor, J., and Wongtawan, T. Comparison of commercial RNA extraction kits and qPCR master mixes for studying gene expression in small biopsy tissue samples from the equine gastric epithelium. Journal of Equine Veterinary Science 28, 135-141, 2017.
    Umar, A., Buermeyer, A.B., Simon, J.A., Thomas, D.C., Clark, A.B., Liskay, R.M., and Kunkel, T.A. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65-73, 1996.
    van der Velden, A.W., and Thomas, A.A. The role of the 5' untranslated region of an mRNA in translation regulation during development. The International Journal of Biochemistry and Cell Biology 31, 87-106, 1999.
    VanNice, J., Gregory, S.T., Kamath, D., and O'Connor, M. Alterations in ribosomal protein L19 that decrease the fidelity of translation. Biochimie 128, 122-126, 2016.
    Waga, S., Hannon, G.J., Beach, D., and Stillman, B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574-578, 1994.
    Wang, S.C. PCNA: a silent housekeeper or a potential therapeutic target? Trends in Pharmacological Sciences 35, 178-186, 2014.
    Wang, W., Nag, S., Zhang, X., Wang, M.H., Wang, H., Zhou, J., and Zhang, R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Medicinal Research Reviews 35, 225-285, 2015.
    Wang, X., Wang, D., Yuan, N., Liu, F., Wang, F., Wang, B., and Zhou, D. The prognostic value of PCNA expression in patients with osteosarcoma: A meta-analysis of 16 studies. Medicine 96, 1-8, 2017.
    Wang, Z., Gerstein, M., and Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10, 57-63, 2009.
    Wilson, D.N., and Doudna Cate, J.H. The structure and function of the eukaryotic ribosome. Cold Spring Harbor Perspectives in Biology 4, 1-17, 2012.
    Xi, J., Ye, F., Wang, G., Han, W., Wei, Z., Yin, B., Yuan, J., Qiang, B., and Peng, X. Polypyrimidine Tract-Binding Protein Regulates Enterovirus 71 Translation Through Interaction with the Internal Ribosomal Entry Site. Virologica Sinica 34, 66-77, 2019.
    Xia, M., Liu, C.J., Zhang, Q., and Guo, A.Y. GEDS: A Gene Expression Display Server for mRNAs, miRNAs and Proteins. Cells 8, 1-4, 2019.
    Xiong, Y., Zhang, H., and Beach, D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71, 505-514, 1992.
    Xu, L., Wang, C., Wen, Z., Yao, X., Liu, Z., Li, Q., Wu, Z., Xu, Z., Liang, Y., and Ren, T. Selective up-regulation of CDK2 is critical for TLR9 signaling stimulated proliferation of human lung cancer cell. Immunology Letters 127, 93-99, 2010.
    Xu, X., Xiong, X., and Sun, Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. Science China Life Sciences 59, 656-672, 2016.
    Xue, S., and Barna, M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nature Reviews Molecular Cell Biology 13, 355-369, 2012.
    Yang, D.Q., Halaby, M.J., and Zhang, Y. The identification of an internal ribosomal entry site in the 5'-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene 25, 4613-4619, 2006.
    Yang, S., Cui, J., Yang, Y., Liu, Z., Yan, H., Tang, C., Wang, H., Qin, H., Li, X., Li, J., Wang, W., Huang, Y., and Gao, H. Over-expressed RPL34 promotes malignant proliferation of non-small cell lung cancer cells. Gene 576, 421-428, 2016.
    Yata, K., and Esashi, F. Dual role of CDKs in DNA repair: to be, or not to be. DNA Repair 8, 6-18, 2009.
    Yeh, C.H., Hung, L.Y., Hsu, C., Le, S.Y., Lee, P.T., Liao, W.L., Lin, Y.T., Chang, W.C., and Tseng, J.T. RNA-binding protein HuR interacts with thrombomodulin 5'untranslated region and represses internal ribosome entry site-mediated translation under IL-1 beta treatment. Molecular Biology of the Cell 19, 3812-3822, 2008.
    Yelick, P.C., and Trainor, P.A. Ribosomopathies: Global process, tissue specific defects. Rare Diseases 3, 1-11, 2015.
    Yin, X., Yu, J., Zhou, Y., Wang, C., Jiao, Z., Qian, Z., Sun, H., and Chen, B. Identification of CDK2 as a novel target in treatment of prostate cancer. Future Oncology 14, 709-718, 2018.
    Yonath, A. Ribosomal crystallography: peptide bond formation, chaperone assistance and antibiotics activity. Molecules and Cells 20, 1-16, 2005.
    Yu, C., Guo, J., Liu, Y., Jia, J., Jia, R., and Fan, M. Oral squamous cancer cell exploits hnRNP A1 to regulate cell cycle and proliferation. Journal of Cellular Physiology 230, 2252-2261, 2015.
    Yuan, Z., Gaba, A.G., Kent, T.S., Bennett, A., Miller, A., and Weber, T.K. Modulation of CDK2-AP1 (p12(DOC-1)) expression in human colorectal cancer. Oncogene 24, 3657-3668, 2005.
    Yusupova, G., and Yusupov, M. Crystal structure of eukaryotic ribosome and its complexes with inhibitors. Philosophical Transactions of the Royal Society B: Biological Sciences 372, 1-9, 2017.
    Zhang, H., Xiong, Y., and Beach, D. Proliferating cell nuclear antigen and p21 are components of multiple cell cycle kinase complexes. Molecular Biology of the Cell 4, 897-906, 1993.
    Zhao, J., Qin, B., Nikolay, R., Spahn, C.M.T., and Zhang, G. Translatomics: The Global View of Translation. International Journal of Molecular Sciences 20, 1-23, 2019.
    Zhao, P., Liu, Q., Miller, W.A., and Goss, D.J. Eukaryotic translation initiation factor 4G (eIF4G) coordinates interactions with eIF4A, eIF4B, and eIF4E in binding and translation of the barley yellow dwarf virus 3' cap-independent translation element (BTE). The Journal of Biological Chemistry 292, 5921-5931, 2017.
    Zhou, X., Hao, Q., Liao, J.M., Liao, P., and Lu, H. Ribosomal protein S14 negatively regulates c-Myc activity. The Journal of Biological Chemistry 288, 21793-21801, 2013.
    Zhou, X., Liao, W.J., Liao, J.M., Liao, P., and Lu, H. Ribosomal proteins: functions beyond the ribosome. Journal of Molecular Cell Biology 7, 92-104, 2015.

    下載圖示 校內:2024-08-06公開
    校外:2024-08-06公開
    QR CODE