| 研究生: |
郭有斌 Guo, Yoou-Bin |
|---|---|
| 論文名稱: |
微中空陰極陣列常壓電漿與低溫成長碳奈米結構 Atmospheric Pressure Microhollow Cathode Discharge Arrays and Low Temperature Growth of Carbon Nanostructures |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 219 |
| 中文關鍵詞: | 奈米材料 、低溫成長 、常壓電漿 、微中空陰極陣列 |
| 外文關鍵詞: | low temperature growth, atmospheric pressure plasma, microhollow cathode discharge arrays, nanomaterials |
| 相關次數: | 點閱:86 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為兩大部分,包括常壓微中空陰極陣列式均勻冷電漿技術的開發與探討,以及利用此技術在常壓下沉積大面積碳奈米結構。
傳統電漿製程操作在真空低壓下,當壓力逐漸提高,電漿容易因熱或電場的不穩定因而收縮形成集中的弧光放電,造成電極或電源供應器的損壞。利用中空陰極效應可在高壓下產生穩定的放電,若將放電孔徑縮小到微米級(約100微米)以下則可有效的抑制不穩定放電的產生,然而將微中空陰極以並聯方式放電以實現大面積的放電技術則有許多的挑戰仍待克服。本研究係探討電源頻率、放電孔洞之氣體流量以及電極材料對常壓微中空陰極陣列電漿特性的影響。分別以直流、脈衝(33.3 kHz)及高週波(13.56 MHz)電源供應器來研究電源頻率對微中空陰極陣列放電的影響,發現微中空陰極陣列的電漿電阻特性會隨著電源頻率的提高而降低,當電源頻率提高到高週波的範圍時,微放電陣列才可以穩定且均勻的操作。本研究可以在37 mm直徑圓形面積上,利用約700中空陰極孔洞產生均勻的常壓電漿。而通過微放電陣列孔洞的高流量氣體可以有效的將電極冷卻,並維持相當高的電漿效率。此外,電極材料對電漿放電效率影響極大,採用耐火性材料(鉻-氮化硼-鉻)的組合可使電極壽命大幅延長20倍以上。本研究尚利用光發射光譜儀(optical emission spectroscopy,OES)來探討電漿中的電子溫度及電漿密度隨操作條件的變化而改變的情形,並發現利用電極上自我偏壓極性的偵測即可預測電漿密度的變化,其相對關係並且在本文中深入的討論。
本論文的第二部份則利用此微中空陰極常壓電漿來進行具特殊奈米結構碳膜的沉積。本研究針對以電漿化學氣相沉積法在接近室溫環境下沉積碳膜,可應用在不耐高溫的基材,如塑膠等。本研究利用微中空陰極陣列式電漿在常壓下即可沉積大面積具特殊奈米結構的碳膜,包括奈米碳纖維(carbon nanofibers)、奈米碳球(carbon nanocages)及多層奈米碳管(multi-walled carbon nanotubes),製程的溫度接近室溫,而且不需觸媒,並可在常壓下連續操作,具工業生產的潛力。本研究進一步探討反應氣體的成分對碳奈米結構的影響,包括在乙炔/氦氣反應物中加入各種氣體如氮氣、氧氣及一氧化碳等。其中添加一氧化碳有助於形成結晶性較佳的奈米石墨結構,而若加入氮氣與氧氣則可以大幅去除非晶質碳結構而獲得更高品質的碳奈米結構。並利用光發射光譜儀、掃瞄式電子顯微鏡、穿透式電子顯微鏡及拉曼光譜來探討碳奈米結構的合成機制,結果顯示最有可能形成碳奈米結構的區域在微中空陰極的孔洞中,而且碰撞頻繁的環境是具特殊碳奈米結構形成的主要因素,高溫環境非為必要條件。
The development of atmospheric pressure microhollow cathode discharge arrays for large area uniform cold plasma generation was studied and characterized, and using this method, large area carbon nanostructures were deposited under atmospheric pressure and room temperature.
Typically, plasma processes have to be operated under low pressure, and once the pressure is increased to a critical value; the glow discharge turn into unstable arcing due to thermal and electric instabilities and damage the power or the electrodes. By reducing the hole diameter to below several hundred micrometers, stable and high-density plasma could be generated by hollow cathode effect under atmospheric pressure. However, parallel operation of microhollow cathode discharge (HMCD) arrays is still an existing challenge. The atmospheric MHCD arrays were developed by studying the effects of power frequency, gas cooling and electrode materials. Dc, pulse (33.3 kHz) and rf (13.56 MHz) power were used to vary the frequency of the power in driving HMCD arrays. It was found that the characteristic resistance of the HMCD arrays was reduced with increasing the power frequency. Only with the power frequency in the radio frequency (MHz) range, the stable and uniform HMCD arrays could be established. A 37 mm diameter electrode with about 700 through holes was used for MHCD arrays. Electrode cooling by gas flow through the MHCD holes could efficiently quench the electrode temperature induced by plasma heating, and the high gas flow also helped sustain the high-density plasma by diluting contaminates. Electrode materials also significantly affected the plasma discharge efficiency. By employing the refractory material to make the electrode with the Cr-h-BN-Cr structure to replace the Ag paste-Clay-S.S mesh structure, the electrode could last much longer in discharging operation. The electron temperature and the density of the plasma were also characterized with optical emission spectroscopy (OES) under various operation conditions. The effect of plasma density on the dc self-bias, measured by an oscilloscope, was also studied and discussed.
Low temperature growth of carbon nanostructures was also attempted by the HMCD arrays. By feeding ethylene/helium mixture through the MHCD arrays, abundant carbon nanostructures like carbon nanofibers, carbon nanocages (also called carbon nanocapsules, carbon nanoparticles, or carbon polyhedral particles) and multi-walled carbon nanotubes were synthesized as observed in SEM and TEM. Surprisingly, these nanostructures could be grown near room temperature (lower than 80℃). By employing the atmospheric MHCD arrays, carbon nanostructures could be deposited on silicon substrate without any catalyst at a substrate temperature around 50℃, which would prevent the damage of thermal sensitive substrates. Since the MHCD arrays are operated at atmospheric pressure, the large area and continuous growth becomes feasible with good commercial potentials. By characterizing the carbon soot by Raman spectroscopy, the better crystalline graphene structure was observed in SEM and TEM by adding CO, N2 and O2 in the ethylene/He gases to etch the amorphous carbon away. As revealed from the OES analysis, the growth of carbon nanostructures likely occurred within the holes of the MHCD arrays. The high frequency collision should play a key role in the low temperature growth of carbon nanostructures.
1.1 W. Siemens: Ann. Phys. Chem. 102 (1857) 66.
1.2 M. S. Dresselhaus and G. Dresselhasu: Nanostructured Materials 9, 33 (1997).
1.3 H. W. Kroto, J. R. Heath, S. O’Brien, R. F. Curl and R. E. Smalley: Nature (London) 318 (1985) 162.
1.4 S. Iijima: Nature (London) 354 (1991) 56.
1.5 S. Kanazawa, H. Kogoma, T. Moriwaki and S. Okazaki: J. Phys. D 21 (1988) 838.
1.6 T. Yokoyawa, M. Kogoma, S. Kanazawa, T. Moriwaki and S. Okazaki: J. Phys. D 23 (1990) 374.
1.7 S. Kanazawa, M. Kogoma, O. Okazaki and T. Moriwaki: Nucl. Instrum. Methods Phys. Res. B 37/38 (1989) 842.
1.8 Y. Babukutty, R. Part, K. Endo, M. Kogoma, S. Okazaki and M. Kodama: Langmuir 15 (1999) 7055.
1.9 J. R. Roth, M. Laroussi and C. Liu: IEEE Int. Conf. on Plasma Sci., 1992, p. 170.
1.10 K. Kelly-Wintenberg, A. Hodge, T. C. Montie, L. Deleanu, D. Sherman, J. R. Roth, P. Tsai and L. Wadsworth: J. Vac. Sci. Technol. A 17 (1999) 1539.
1.11 T. C. Montie, K. Kelly-Wintenberg and J. R. Roth: IEEE Trans. Plasma Sci. 28 (2000) 41.
1.12 J. R. Roth, D. M. Sherman, R. B. Gardi, F. Karakaya, Z. Chen, T. C. Montie, K. Kelly-Wintenberg and P. P.-Y. Tasi: IEEE Trans. Plasma Sci. 28 (2000) 56.
1.13 K. Kelly-Wintenberg, D. M. Sherman, P. P.-Y. Tsai, R. B. Gadri, F. Karakaya, Z. Chen, J. R. Roth and T. C. Montie: IEEE Trans. Plasma Sci. 28 (2000) 64.
1.14 E. E. Kunhardt: IEEE Trans. Plasma Sci. 28 (2000) 189.
1.15 A. Nagata, S. Takehiro, H. Sumi, M. Kogoma, S. Okazaki and Y. Horiike: Proc. 2nd Jpn. Symp. Plasma Chem., Kyoto, Jan. 25-27, 1989 (Japanese Society of Applied Physics, Kyoto, 1989) p. 109.
1.16 H. Koinuma, K. Fukuda, M. Kogoma, S. Okazaki, T. Hashimoto and M. Kawasaki: Proc. 9th Int. Symp. Plasma Chem. Sept. 4-8, Pugnochiuso, 1989 (International Union of Pure and Applied Chemistry, Pugnochiuso, 1989) p. 1521.
1.17 H. Koinuma, H. Ohkubo, T. Hashimoto, K. Inomata, T. Shiraishi, A. Miyanaga and S. Hayashi: Appl. Phys. Lett. 60 (1992) 816.
1.18 K. Inomata and H. Koinuma: Appl. Phys. Lett. 66 (1995) 2188.
1.19 S. E. Babayan, J. Y. Jeong, V. J. Tu, G. S. Selwyn and R. F. Hicks: Plasma Sources Sci. Technol. 7 (1998) 286.
1.20 J. Y. Jeong, S. E. Babayan, J. Park and R. F. Hicks: J. Vac. Sci. Technol. A 17 (1999) 2581.
1.21 J. Park, I. Henins, J. Y. Jeong, R. F. Hicks and D. Shim: Appl. Phys. Lett. 76 (2000) 288
1.22 K. H. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin and W. W. Byszewski: Appl. Phys. Lett. 68 (1996) 13.
1.23 A. E. Habachi and K. H. Schoenbach: Appl. Phys. Lett. 72 (1998) 22.
1.24 A. E. Habachi and K. H. Schoenbach: Appl. Phys. Lett. 73 (1998) 885.
1.25 R. H. Stark and K. H. Schoenbach: Appl. Phys. Lett. 74 (1999) 3770.
1.26 R. H. Stark and K. H. Schoenbach: J. Appl. Phys. 85 (1999) 2075.
1.27 J. W. Frame, D. J. Wheeler, T. A. DeTemple and J. G. Eden: Appl. Phys. Lett. 71 (1997) 1165.
1.28 J. W. Frame, P. C. John, T. A. DeTemple and J. G. Eden: Appl. Phys. Lett. 72 (1998) 2634.
1.29 S. J. Park, C. J. Wagner, C. M. Herring and J. G. Eden: Appl. Phys. Lett. 77 (2000) 199.
1.30 S. J. Park, J. Chen, C. Liu and J. G. Eden: Appl. Phys. Lett. 78 (2001) 419.
1.31 C. J. Wagner, S. J. Park and J. G. Eden: Appl. Phys. Lett. 78 (2001) 709.
1.32 H. Barankova and L. Bardos: Appl. Phys. Lett. 76 (2000) 285.
1.33 R. L. Price, M. C. Waid, K. M. Haberstroh and T. J. Webster: Biomaterials 24 (2003) 1877.
1.34 M. S. Dresselhaus: Nature (London) 358 (1992) 195.
1.35 J. Tersoff: Phys. Rev. B 46, (1992) 15546.
1.36 D. T. Colbert, J. Zhang, S. M. McClure, P. Nikolaev, Z. Chen, J. H. Hafner, D. W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Rinzler and R. E. Smalley: Science 266 (1994) 1218.
1.37 M. R. Pederson and J. Q. Broughton: Phys. Rev. Lett. 69 (1992) 2689.
1.38 Q. Y. Wang and J. K. Johnson: J. Phys. Chem. B 103 (1999) 4809.
1.39 F. Beguin, V. A. Nalimova, D. E. Sklovsky, G. N. Bondarenko, H. Alvergnat-Gaucher and S. Bonnamy: Synthetic Metals 88 (1997) 89.
1.40 G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi and W. Z. Li: J. Power Sources 75 (1998) 175.
1.41 W. A. de Heer, J. M. Bonard, K. Fauth, A. Chatelain, L. Forro and D. Ugarte: Adv. Mater. 9 (1997) 87.
1.42 E. Wilson: Chem. Eng. News 76 (1998) 11.
1.43 Y. Saito, S. Uemura and K. Hamaguchi: Jpn. J. Appl. Phys. 37 (1998) L346.
1.44 P. G. Collins and A. Zettl: Phys. Rev. B 55 (1997) 9391.
1.45 Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig and R. P. H. Chang: Appl. Phys. Lett. 72 (1998) 2912.
1.46 W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park and J. M. Kim: Appl. Phys. Lett. 75 (1999) 3129.
1.47 W. Zhu, C. Bower, O. Zhou, G. Kochanski and S. Jin: Appl. Phys. Lett. 75 (1999) 873.
1.48 J. Li, A. M. Cassell and H. J. Dai: Surf. Interface Anal. 28 (1999) 8.
1.49 S. S. Wong, A. T. Wooley, E. Joselevich and C. M. Lieber: Chem. Phys. Lett. 306 (1999) 219.
1.50 K. A. Dean and B. R. Chalamala: J. Appl. Phys. 85 (1999) 3832.
1.51 M. Menon and D. Srivastava: J. Mater. Res. 13 (1998) 2357.
1.52 M. Menon and D. Srivastava: Phys. Rev. Lett. 79 (1997) 4453.
2.1. 洪昭南: 化工技術,第24期,(1995) 124。
2.2. 洪昭南、郭有斌: 化工技術,第81期 (1999) 190。
2.3. 洪昭南、郭有斌: 化工技術,第103期 (2001) 156。
2.4. C. M. Ferreira and J. L. Delcroix: J. Appl. Phys. 49 (1978) 2380.
2.5. J. L. Delcroix and A. R. Trindade: Advances in Electronics and Electron Physics Vol.35, Edited by L. Marton, (1974) 87.
2.6. M. T. Ngo, K. H. Schoenbach, G. A. Gerdin and J. H. Lee: IEEE Trans. Plasma Sci. 18 (1990) 669.
2.7. 小宮山宏: 化學工業論文集(日本)16 (1990) 415.
2.8. 田明波、劉德令編譯: 薄膜科學與技術手冊(機械工業出版社,北京)(1991) 1。
2.9. J. Carlsson: Thin Solid Films 130 (1985) 261.
2.10. K. F. Jensen and W. Kern: Thin Film Processes II, edited by J. L. Vossen and W. Kern (Academic Press) (1991) 283.
2.11. C. E. Morosanu: Thin Films by Chemical Vapor Deposition (Elsevier, New York) (1990) chap. 5.
2.12. E. Sirtl, I. P. Hunt and D. H. Sawyer: J. Electrochem. Soc. 121 (1974) 919.
2.13. 小沼光晴著 (張光華編譯): 等離子體與成膜基礎 (國防工業出版社,北京) (1994) 34。
2.14. 謝賢書等: 直流電漿火炬之基本原理,工研院著作(1993)。
2.15. 謝賢書等: 微波電漿處理氣態污染物之基本原理,工研院著作(1994)。
2.16. 謝賢書等: 直流電漿火炬之設計與測試,工研院著作(1995)。
2.17. J. S. Chang, P. A. Lawless and T. Yamamoto: IEEE Trans. Plasma Sci. 19(6) (1991) 1152.
2.18. U. Reitz, J. G. H. Salage and R. Schwarz: Surf. Coat. Technol. 59(1993) 144.
2.19. J. R. Roth: Industrial Plasma Engineering, Vol. 1: Principles, IOP Publishing Ltd, Bristol and Philadelphia (1995).
2.20. Y. P. Raizer: Gas Discharge Physics, Springer-Verlag, Berlin Heidelberg (1991).
2.21. E. E. Kunhardt: IEEE Trans. Plasma Sci., 28(1) (2000) 189.
2.22. B. Eliasson and U. Kogelschatz: IEEE Trans. Plasma Sci., 19(6) (1991) 1063.
2.23. Y. S. Akishev, A. A. Deryugin, I. V. Kochetov, A. P. Natartovich and N. L. Trushkin: J. Phys. D: Appl. Phys. 26 (1993) 1630.
2.24. S. Pekarek, V. Kriha, M. Simek, R. Balek and F. Hanitz: Plasma Sources Sci. Technol. 8 (1999) 513.
2.25. W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman: Nature 347 (1990) 354.
2.26. T. W. Ebbesen and P. M. Ajayan: Nature 358 (1992) 220.
2.27. S. Iijima and T. Ichihashi: Nature 361 (1993) 603.
2.28. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer and R. E. Smalley: Science 273 (1996) 483.
2.29. M. Endo, A. Oberlin and T. Kotama: J. Cryst. Growth 32 (1976) 335.
2.30. G. G. Tibbetts: J. Cryst. Growth 66 (1984) 632.
2.31. J. S. Speck, M. Endo and M. S. Dresselhaus: J. Cryst. Growth 94 (1989) 834.
2.32. N. M. Rodriguez, A. Chambers and R. T. K. Baker: Langmuir 11 (1995) 3862.
2.33. M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, S. Yoshimura and E. Ota: Appl. Phys. Lett. 67 (1995) 2477.
2.34. H. W. Kroto, J. R. Hearth, S. C. O’Brien, R. F. Curl and R. E. Smalley: Nature 318(14) (1985) 162.
2.35. H. W. Kroto and K. McKay: Nature 331(28) (1988) 328.
2.36. D. Ugarte: Nature 359(22) (1992) 707.
2.37. Y. Saito: Carbon 33(7) (1995) 979.
2.38. F. Banhart and P. M. Ajayan: Nature 382(1) (1996) 433.
2.39. 梁國超: 以中空陰極化學氣相沉積法成長鑽石膜及碳微管,國立成功大學化工系,博士論文 (2000)。
2.40. R. Reif: Handbook of Plasma Processing Technology, edited by S. Rossnagel, J. Cuomo and W. Westwood, Noyes Publication, New York (1990), chap. 10.
4.1. A. D. White: J. Appl. Phys. 30(5) (1959) 711.
4.2. K. H. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin and W. W. Byszewski: Appl. Phys. Lett. 68(1) (1996) 13.
4.3. J. W. Frame, D. J. Wheeler, T. A. DeTemple and J. G. Eden: Appl. Phys. Lett. 71(9) (1997) 1165.
4.4. R. H. Stark and K. H. Schoenbach: J. Appl. Phys. 85(4) (1999) 2075.
4.5. Y. P. Raizer: Gas Discharge Physics, Springer-Verlag, Berlin Heidelberg (1991).
4.6. E. Nasser: Fundamentals of Gaseous Ionization and Plasma Electronics, Wiley-Interscience (John Wiley and Sons, Inc), New York (1970).
4.7. R. H. Stark and K. H. Schoenbach: Appl. Phys. Lett. 74(25) (1999) 3770.
4.8. J. L. Delcroix and A. R. Trindade: Advances in Electronics and Electron Physics Vol.35, Edited by L. Marton, (1974) 87.
4.9. M. Konuma: Film Deposition by Plasma Techniques, Springer-Verlag, Berlin Heidelberg (1992).
4.10. B. Chapman: Glow Discharge Processes: Sputtering and Plasma Etching, John Wiley & Sons, New York (1980).
4.11. M. A. Libeberman and A. J. Lichtenberg: Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, New York (1994).
4.12. K. H. Schoenbach and E. E. Kunhardt: IEEE Intern. Conf. Plasma Sci. paper 6P50 (1998) 283.
4.13. J. W. Coburn and M. Chen: J. Appl. Phys. 51 (1980) 3134.
4.14. H. C. Barshilia and V. D. Vankar: J. Appl. Phys. 80 (1996) 3694.
4.15. R. E. Walkup, K. L. Saenger and G. S. Selwyn: J. Chem. Phys. 84 (1986) 2668.
4.16. H. R. Griem: Plasma Spectroscopy, McGraw-Hill Book Company, New York (1964).
4.17. A. Rodero, M. C. Garcia, M. C. Quintero, A. Sola and A. Gamero: J. Phys. D: Appl. Phys. 29 (1996) 681.
4.18. B. A. Vojak, S. –J. Park, C. J. Wagner, J. G. Eden, R. Koripella, J. Burdon, F. Zenhausern and D. L. Wilcox: Appl. Phys. Lett. 78(10) (2001) 1340.
4.19. S. –J. Park, C. J. Wagner, C. M. Herring and J. G. Eden: Appl. Phys. Lett. 77(2) (2000) 199.
4.20. U. Kogelschatz, B. Elliason and W. Egli: Proc. Of the XXIII-th ICPIG, Toulouse (1997) C4-47.
4.21. I. Petzenhauser, U. Ernst, W. Hartmann and K. Frank: Proc. Of the APP Spring Meeting (2001) 217.
5.1. S. P. Bugaev, A. D. Korotaev, K. V. Oskomov and N. S. Sochugov: Surf. Coat. Technol. 96 (1997) 123.
5.2. D. Liu, S. Yu, T. Ma, Z. Song and X. Yang: Jpn J. Appl. Phys. 39 (2000) 3359-3360.
5.3. Y. –M. Shyu and F. C.-N. Hong: Diam. Relat. Mater. 10 (2001) 1241.
5.4. Y. –M. Shyu and F. C.-N. Hong: Mater. Chem. Phys. 72 (2001) 223.
5.5. J. R. Brock and P. Lim: Appl. Phys. Lett. 58(12) (1991) 1259.
5.6. S. -Y Xie, R. –B. Huang, L. –J. Yu, J. Ding and L. -S. Zheng: Appl. Phys. Lett. 75(18) (1999) 2764.
5.7. N. Jiang, R. Koie, T. Inaoka, Y. Shintani, K. Nishimura and A. Hiraki: Appl. Phys. Lett. 81(3) (2002) 526.
5.8. M. Ishigami, J. Cumings, A. Zettl and S. Chen: Chem. Phys. Lett. 319 (2000) 457.
5.9. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou and G. A. J. Amaratunga: Nature 414(29) (2001) 506.
5.10. N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. B. K. Teo and K. Limura: J. Appl. Phys. 92(5) (2002) 2783.
5.11. O. Smiljanic, B. L. Stansfield, J. –P. Dodelet, A. Serventi and S. Desilets: Chem. Phys. Lett. 356 (2002) 189.
5.12. A. T. Matveev, D. Golberg, V. P. Novikov, L. L. Klimkovich and Y. Bando: Carbon 39 (2001) 137.
5.13. Y. Yin, J. Zou and D. R. Mckenzie: Nuclear Instruments and Methods in Physics Research B 199 (1996) 587.
5.14. J. Jiao, P. E. Nolan, S. Seraphin, A. H. Cutler and D. C. Lynch: J. Electrochem. Soc. 143(3) (1996) 932-935.
5.15. P. Chen, X. Wu, J. Lin, H. Li and K. L. Tan: Carbon 38 (2000) 139-143.
5.16. Y. Saito and M. Inagaki: Jpn. J. Appl. Phys. 32 (1993) L954.
5.17. S. Sakaki, N. Kitagawa, N. Takada and M. Nagatsu: Jpn. J. Appl. Phys. 36 (1997) 7399.
5.18. X. Zhao, T. Okazaki, A. Kasuya, H. Shimoyama and Y. Ando: Jpn. J. Appl. Phys. 38 (1999) 6014.
5.19. R. W. B. Pearse and A. G. Gaydon: The Identification of Molecular Spectra, Chapman and Hall Ltd., New York (1976).
5.20. 許嘉元: 類鑽碳薄膜之被覆與氮化碳晶體薄膜成長之研究,國立成功大學化工系博士論文 (1997)。
5.21. A. C. Ferrari and J. Robertson: Phys. Rev. B 61(20) (2001) 14096.
5.22. 徐逸明: 化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究,國立成功大學化工系博士論文 (2001)。
5.23. A. Kuczko: Appl. Phys. A 74(5) (2002) 617.
5.24. R. T. K. Baker and R. J. Waite: J. Catalysis 37 (1975) 101.
5.25. R. T. K. Baker and P. S. Harries: Chemistry and Physics of Carbon, Marcel Dekker, New York, (1978) 83.
5.26. A. Oberlin, M. Endo and T. Koyama: J. Crystal Growth 32 (1976) 335.
5.27. Y. Saito: Carbon 33(7) (1995) 979.
5.28. V. V. Kovalevski and A. N. Safronov: Carbon 36(7-8) (1998) 963.
5.29. 王宏達:奈米碳管的成長與分析,國立成功大學碩士論文 (2001)。
5.30. S. Sasaki, N. Kitagawa, N. Takada and M. Tagatsu: Jpn. J. Appl. Phys. 36 (12A) (1997) 7399.
5.31. R. Saito, G. Dresselhaus and M. S. Dresselhaus: Physical Properties of Carbon Nanotubes, Imperial College Press (1998).
5.32. H. Kroto: Nature 242(25) (1988) 139.
5.33. T. W. Ebbesen, edited: Carbon Nanotubes Preparation and Properties, CRC Press, New York (1997).
5.34. H. W. Kroto and K. McKay: Nature 331(28) (1988) 328-331.
5.35. H. W. Kroto, A. W. Allaf and S. P. Balm: Chem. Rev. 91 (1991) 1213.