| 研究生: |
劉彥群 Liu, Yen-chun |
|---|---|
| 論文名稱: |
白光LED用之高效能氮氧化物螢光粉(Ca-alpha-SiAlON)之合成及製程開發 Process Development for Synthesis of High-Performance Oxynitride Phosphor (Ca-alpha-SiAlON) for White Light LEDs |
| 指導教授: |
鍾賢龍
Chung, Shyan-lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 螢光粉 、氮氧化物 、燃燒合成法 、引燃劑 、SiAlON |
| 外文關鍵詞: | Igniter, Combustion synthesis, SiAlON, Phosphor, Oxynitride |
| 相關次數: | 點閱:84 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了符合現今白光發光二極體的需求與應用,如高發光效率、高演色性、壽命長等,必須找出一種具有高發光效率、熱穩定性佳以及可使用藍光或紫外光激發之螢光粉體,而氮氧化物螢光粉Ca-α-SiAlON即具有這些優點,由於現今技術製造此種氮氧化物螢光粉體所需的條件較為嚴苛,如:須在高溫、高壓或長時間下反應且設備昂貴,以致生產成本高,此類氮氧化物螢光粉之應用故而受限。本論文研究乃引用本實驗室過去建立之合成氮化物陶瓷粉體之燃燒合成法,針對氮氧化物螢光粉之合成特性,予以改良創新,最後成功地開發出能夠在低壓下以及在短時間內可大量製造Ca-α-SiAlON螢光粉之方法。此方法係使用引燃劑包覆反應物並在保溫裝置中進行燃燒合成反應,本論文並探討引燃劑與反應物尺寸及比例之關係、保溫裝置對產物之影響、反應物的組成對產物之影響、最後找出發光強度較佳之條件並與市售螢光粉作比較。實驗結果發現在保溫裝置的使用下,並利用直徑3cm之引燃劑包覆直徑1.7cm之反應物,藉由調配反應物間的組成與比例,則可合成出不同螢光強度及波長之範圍之Ca-α-SiAlON螢光粉體,在較佳的組別中,此螢光粉的激發波長範圍為220~500nm,若利用380nm之紫外光激發此螢光粉可得到一主峰波長位置位於555nm及發光範圍介於400~670nm之放射光譜,其螢光發光強度可達市售螢光粉的94.1%。
In order to fulfill the current requirements and applications such as high efficiency, color rendering index, and superior lifetime in light emitting diode (LED). It is necessary to develop a novel phosphor material which has high luminescence intensity, thermal stability, and can be excited from blue to UV light. The literatures indicated that oxynitride phosphor (Ca-α-SiAlON) had these excellent advantages. However, the conditions for producing this kind of oxynitride phosphor by using nowadays synthesis methods are too strict such as high temperature, high pressure, long duration time, and expensive equipments. For the reason the production costs of oxynitride phosphor are too high to limit its applications. This thesis related to an innovative and improved method for synthesis of oxynitride phosphors (Ca-α-SiAlON) based on self-propagating high temperature synthesis (SHS) reactions which had been developed on nitride ceramic materials in our laboratory. Finally this thesis successfully developed a new SHS method by covering the reactant with an igniting agent. The Ca-α-SiAlON phosphor was produced in large scale, low pressure, and short duration time. It discussed the effects on the properties of the product including different compact size between reactant and igniting agent, thermal insulation equipment, reactant composition, and compared with the commercial phosphor. The results showed that the phosphor with different luminescence intensity and wavelength by using different condition and parameters. Finally there was a product which excitation spectrum was covered the range of 220-500nm and a broad emission band in the range of 400-670nm and centered at 555nm was observed upon 380nm excitation. The luminescence intensity is 94.1% compared with commercial phosphor.
1. Salkind, A.J. and P. Israel. Thomas Alva Edison - battery and device innovation in response to application's needs. in 23rd International Power Sources Symposium. 2003. Amsterdam, NETHERLANDS: Elsevier Science Bv.
2. Liaw, S.-K. and S.-Y. Chang, Recently Technologies Development of High-Power White Light Emitting Diodes. Instruments Today, 2006. 152: p. 78-86.
3. Sugiura, M., Review of metal-halide discharge-lamp development 1980-1992. Iee Proceedings-a-Science Measurement and Technology, 1993. 140(6): p. 443-449.
4. Jacobson, M.Z., Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2009. 2(2): p. 148-173.
5. White, M.A., Properties of materials. 1999, New York: Oxford University Press, Inc.
6. Neamen, D.A., Semiconductor physics and devices: basic principles. third ed., ed. K. Butcher. 2003, New York: McGraw-Hill Companies, Inc.
7. Xie, R.-J. and N. Hirosaki, Silicon-based oxynitride and nitride phosphors for white LEDs-A review. Science and Technology of Advanced Materials, 2007. 8(7-8): p. 588-600.
8. 劉如熹與紀喨勝(民92),紫外光發光二極體用螢光分介紹。台北市:全華科技圖書股份有限公司。
9. Kitai, A., Luminescent Materials and Applications. Wiley Series in Materials for Electronic and Optoelectronic Applications, ed. P. Capper, S. Kasap, and A. Willoughby. 2008: John Wiley & Sons Ltd.
10. 王卉宜,“氮化物紅色螢光粉體之合成製程開發 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國97年 (2008年)。
11. Lee, W.-C., et al., Novel process for combustion synthesis of AlN powder. Journal of Materials Research, 1995. 10(3): p. 774-778.
12. Lee, W.-C. and S.-L. Chung, Combustion synthesis of Si3N powder. Journal of Materials Research, 1997. 12(3): p. 805-811.
13. Hwang, C.-C. and S.-L. Chung, Combustion synthesis of boron nitride powder. Journal of Materials Research, 1998. 13(3): p. 680-686.
14. Lin, C.-N. and S.-L. Chung, Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II). Journal of Materials Research, 2004. 19(10): p. 3037-3045.
15. Chung, S.-L., C.-W. Chang, and F.J. Cadete Santos Aires, Reaction mechanism in combustion synthesis of -Si3N4 powder using NaN3. Journal of Materials Research, 2008. 23(10): p. 2720-2726.
16. Yen, W.M., S. Shionoya, and H. Yamamoto, Phosphor handbook. 2nd ed. 2006, New York: CRC Press Taylor & Francis Group.
17. 溫佑良,“不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究 ”,碩士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國92年 (2003年)。
18. 高弘任,“檸檬酸法製備鋁酸鍶鈣螢光粉體及其光性質研究 ”,碩士論文,國立成功大學材料科學及工程學系,台南市,台灣,民國97年 (2008年)。
19. Saller, E.J., Cathodoluminescence detector for applied research laboratories electron microprobe. Review of Scientific Instruments, 1967. 38(6): p. 837-&.
20. Gurnett, K.W., The light emitting diode (LED) and its application. Microelectronics Journal, 1996. 27(4-5): p. R37-R41.
21. Lloyd, R.A., Low level chemiluminescence from hydrocarbon autoxidation reactions. Part 2.—Thermal decomposition of benzoyl peroxide, cumene hydroperoxide and U.V. irradiated solvents. Transactions of the Faraday Society, 1965. 61(514P): p. 2182-&.
22. McKeever, S.W.S., Thermoluminescence of Solids. Cambridge Solid State Science Series. October 1988: Oklahoma State University.
23. Barber, B.P., et al., Defining the unknowns of sonoluminescence. Physics Reports-Review Section of Physics Letters, 1997. 281(2): p. 65-143.
24. Blasse, G. and B.C. Grabmaier, Luminescent Materials. September 1994: Springer-Verlag Telos.
25. 陳嘉民,“微波輔助溶液燃燒合成法製備螢光粉體 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國95年 (2006年)。
26. Kuboniwa, S., H. Kawai, and T. Hoshina, Cathodoluminescence Saturation and Decay Characteristics of ZnS: Cu,Al Phosphor. Japanese Journal of Applied Physics, 1980. 19(9): p. 1647-1653.
27. 石景仁,“白光發光二極體用之釔鋁石榴石螢光粉合成及特性分析 ”,碩士論文,國立臺灣大學化學系,台北市,台灣,民國90年 (2001年)。
28. Cao, G.Z. and R. Metselaar, alpha'-SiAlON ceramic - a review. Chemistry of Materials, 1991. 3(2): p. 242-252.
29. Ekstrom, T. and M. Nygren, SiAION ceramic. Journal of the American Ceramic Society, 1992. 75(2): p. 259-276.
30. Schnick, W., Nitridosilicates, oxonitridosilicates (sions), and oxonitridoaluminosilicates (sialons): New materials with promising properties. International Journal of Inorganic Materials, 2001. 3(8): p. 1267-1272.
31. Xie, R.J., et al., Preparation and luminescence spectra of calcium- and rare-earth (R = Eu, Tb, and Pr)-codoped alpha-SiAlON ceramics. Journal of the American Ceramic Society, 2002. 85(5): p. 1229-1234.
32. van Krevel, J.W.H., et al., Luminescence properties of terbium-, cerium-, or europium-doped alpha-sialon materials. Journal of Solid State Chemistry, 2002. 165(1): p. 19-24.
33. Karunaratne, B.S.B., R.J. Lumby, and M.H. Lewis, Rare-earth-doped alpha'-Sialon ceramics with novel optical properties. Journal of Materials Research, 1996. 11(11): p. 2790-2794.
34. Shen, Z.J., M. Nygren, and U. Halenius, Absorption spectra of rare-earth-doped alpha-sialon ceramics. Journal of Materials Science Letters, 1997. 16(4): p. 263-266.
35. Sakuma, K., et al., Warm-white light-emitting diode with yellowish orange SiAlON ceramic phosphor. Optics Letters, 2004. 29(17): p. 2001-2003.
36. Xie, R.J., et al., Eu2+-doped Ca-alpha-SiAlON: A yellow phosphor for white light-emitting diodes. Applied Physics Letters, 2004. 84(26): p. 5404-5406.
37. Suehiro, T., et al., Powder synthesis of Ca-alpha'-SiAlON as a host material for phosphors. Chemistry of Materials, 2005. 17(2): p. 308-314.
38. Xie, R.-J., et al., Photoluminescence of rare-earth-doped Ca-alpha-SiAlON phosphors: Composition and concentration dependence. Journal of the American Ceramic Society, 2005. 88(10): p. 2883-2888.
39. Huang, J.-S., et al. A study of luminescent and structure properties of alpha-SiAlON:Yb2+ phosphors prepared by hydrothermal synthesis process. 2007. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Inc.
40. Lin, C.-H., et al. An investigation of luminescent and structure properties of Ca-alpha-SiAlON doped Eu2+ phosphors fabricated by hydrothermal synthesis process. 2007. Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Inc.
41. Sakuma, K., N. Hirosaki, and R.-J. Xie, Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-alpha-SiAlON ceramic phosphors. Journal of Luminescence, 2007. 126(2): p. 843-852.
42. Li, H.L., et al., Phase purity and luminescence properties of fine Ca-alpha-SiAlON:Eu phosphors synthesized by gas reduction nitridation method. Journal of the Electrochemical Society, 2008. 155(6): p. 175-179.
43. Ryu, J.H., et al., Luminescent properties of Ca-alpha-SiAlON: Eu2+ phosphors synthesized by gas-pressured sintering. Journal of the Electrochemical Society, 2008. 155(4): p. 99-104.
44. Suehiro, T., et al., One-step preparation of Ca-alpha-SiAlON: Eu2+ fine powder phosphors for white light-emitting diodes. Applied Physics Letters, 2008. 92(19): p. 191904.
45. Chen, K., et al., Microstructure and formation mechanism of combustion-synthesized rodlike Ca-alpha-sialon crystals. Journal of Materials Research, 2001. 16(7): p. 1928-1934.
46. Fu, R., et al., Combustion synthesis of rod-like alpha-SiAlON seed crystals. Materials Letters, 2004. 58(12-13): p. 1956-1958.
47. Liu, G., et al., Effect of diluents and NH4F additive on the combustion synthesis of Yb-alpha-SiAlON. Journal of the European Ceramic Society, 2005. 25(14): p. 3361-3366.
48. Liu, G., et al., Growth mechanism of Y-alpha-SiAlON whiskers prepared by combustion synthesis. Journal of Materials Research, 2005. 20(4): p. 889-894.
49. Liu, G., et al., Preparation of (Ca, Mg) -SiAlON powders by combustion synthesis. Journal of Materials Science, 2005. 40(12): p. 3255-3257.
50. Liu, G., et al., Preparation of Ca-alpha-SiAlON powders with rod-like crystals by combustion synthesis. Ceramics International, 2006. 32(4): p. 411-416.
51. Liu, G., et al., Novel faceted -SiAlON micro-crystals prepared by combustion synthesis. Journal of the American Ceramic Society, 2006. 89(1): p. 364-366.
52. Liu, G., et al., Phase transformation and growth of rod-like alpha-SiAlON particles during combustion synthesis. Materials Letters, 2006. 60(9-10): p. 1276-1279.
53. Liu, G., et al., Fabrication of (Ca + Yb)- and (Ca + Sr)-stabilized alpha-SiAlON by combustion synthesis. Materials Research Bulletin, 2006. 41(3): p. 547-552.
54. Liu, G., et al., Mechanical-activation-assisted combustion synthesis of alpha-SiAlON in air. Materials Research Bulletin, 2007. 42(6): p. 989-995.
55. Liu, G., et al., Fabrication of one-dimensional rod-like alpha-SiAlON powders in large scales by combustion synthesis. Journal of Alloys and Compounds, 2008. 454(1-2): p. 476-482.
56. Mitomo, M., M. Takeuchi, and M. Ohmasa, Preparation of alpha-Sialon powders by carbothermal reduction and nitridation. Ceramics International, 1988. 14(1): p. 43-48.
57. Munir, Z.A., Synthesis of high-temperature materials by self-propagating combustion methods. American Ceramic Society Bulletin, 1988. 67(2): p. 342-349.
58. Yi, H.C. and J.J. Moore, Self-propagating high-temperature (cimbustion) synthesis (SHS) of powder-compacted materials. Journal of Materials Science, 1990. 25(2B): p. 1159-1168.
59. Subrahmanyam, J. and M. Vijayakumar, Self-propagating high-temperature synthesis. Journal of Materials Science, 1992. 27(23): p. 6249-6273.
60. White, D.R., Temperature Measurement, in Kirk‑Othmer Encyclopedia of Chemical Technology. 2006, John Wiley & Sons, Inc.
61. Tsuji, K., X-Ray Technology, in Kirk‑Othmer Encyclopedia of Chemical Technology. 2007, John Wiley & Sons, Inc.
62. Weaver, R., Microscopy, in Kirk‑Othmer Encyclopedia of Chemical Technology. 2003, John Wiley & Sons, Inc.
63. Hwang, S.L. and I.W. Chen, Nucleation amd growth of alpha'-Sialon on alpha-Si3N4. Journal of the American Ceramic Society, 1994. 77(7): p. 1711-1718.
64. C. E. Curtis, A.G.T., Ceramic Properties of Europium Oxide. Journal of the American Ceramic Society, 1959. 42(3): p. 151-156.