簡易檢索 / 詳目顯示

研究生: 黃嘉蓁
Huang, Chia-Chen
論文名稱: 應用於射頻前端系統之次諧波混頻器與相移器及正交除頻器之研製
Sub-harmonic Mixer, Phase Shifter and Quadrature Frequency Divider for RF Front-end System Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 61
中文關鍵詞: 單石微波晶片次諧波混頻器可調式相移器除三再生式除頻器
外文關鍵詞: MMIC, Sub-harmonic mixers, adjustable phase shifter, divide-by-three regenerative frequency divider
相關次數: 點閱:154下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為三個部分,主要研製應用於微波與毫米波頻段之射頻前端系統之電路。第一部分首先提出一個採用 WIN 0.15 μm pHEMT製程的寬頻次諧波混頻器,克服了傳統的次諧波混頻器電路因為使用λLO/4的開路與短路微帶線,所以難以達成寬頻操作的特性,本論文使用同時提供射頻之功率分配與本振訊號平衡至不平衡轉換的功能之新式巴倫,除了達成晶片精簡化的目的,並且頻寬有37~80 GHz。
    第二部分實現一個36GHz可調式的四位元相移器,電路採用三組高通濾波器架構,搭配一組高通/低通濾波器架構之180°相移控制器,開關電路全採用二極體,比起使用FET元件作為開關,可減少將近一半的偏壓電源,有效地降低電路複雜度,並且維持低插入損耗之變化。量測結果在36 GHz時,插入損耗為12.5dB,變化量為約為±1.5dB,返回損耗皆大於10dB。
    第三部分則使用TSMC 90 nm製程實現了應用於24 GHz車用防撞雷達的再生式正交相位除三除頻器,從模擬結果可看出擁有再生式除頻器的寬可調頻率範圍以及低相位雜訊的特性:從17 GHz到25 GHz(38%),距中心頻率1 MHz時最好的相位雜訊為-145.5 dBc/Hz。

    This thesis focuses on the design of microwave and millimeter-wave front-end circuits. It is divided into three parts. A wideband sub-harmonic pumped mixer using WIN 0.15 m pHEMT is the first challenge. The bandwidth limitation of traditional circuits using quarter-wavelength microstrip lines has been solved. A new type of balun is proposed, which can provide both the functions of power division and balance-to-unbalance transformation. The bandwidth is extended to 37-80 GHz and also the size is reduced.
    In the second part of this thesis, a 36 GHz adjustable four-bit phase shifter is realized. It consists of three high-pass filters and one 180° phase shifter based on high-pass/low-pass filter structures. Diode switches are used instead of their FET counterparts. They need only about half of the bias power sources and significantly reduce the circuit complexity. It achieves a 4-bit 360° phase-tuning range, while the variation of the insertion losses is low. The insertion loss is 12.5±1.5dB at 36 GHz. The return losses are better than 10dB.
    Finally, a quadrature phase divided-by-three frequency divider for 24GHz automotive collision avoidance radars is realized by TSMC 90 nm process. From the results of the simulations, it is observed that the frequency tuning range of this regenerative divider is wide, from 17 GHz to 25 GHz (38%), with very low phase noise, about -145.5 dBc/Hz one MHz away from the carrier.

    摘要 I Abstract II 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1-1 研究動機 1 1-2 論文綱要 3 第二章 37-80GHZ寬頻二次諧波混頻器 4 2-1 研究動機 4 2-2 混頻器設計 4 2-2-1混頻器簡介與設計參數 4 2-2-2混頻器架構 10 2-3二極體混頻原理及分析 12 2-4寬頻二次諧波混頻器設計 16 2-4-1電路架構與設計原理 16 2-4-2電路佈局 21 2-4-3電路測試與量測結果 22 2-4-4結果與討論 25 第三章 36GHZ四位元相移器 28 3-1 研究動機 28 3-2相移器設計 29 3-2-1相移器簡介與設計參數 29 3-2-2相移器架構 30 3-3 四位元相移器設計 34 3-3-1電路架構與設計原理 34 3-3-2電路佈局與測試 38 3-3-3電路模擬與量測結果 39 3-3-4結果與討論 42 第四章 24GHZ再生式正交相位除三除頻器 44 4-1 研究動機 44 4-2鎖相迴路與除頻器簡介 46 4-2-1鎖相迴路簡介 46 4-2-2除頻器架構 47 4-3正交除三除頻器設計 48 4-3-1電路架構與設計原理 48 4-3-2電路佈局與測試考量 52 4-3-3電路模擬 53 4-3-4結果與討論 56 第五章 結論 57 參考文獻 58

    [1] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
    [2] S. A. Maas, The RF and microwave circuit design cookbook, Norwood, MA: Artech House, 1998
    [3] M. Cohn, J. E. Degenford, and B. A. Newman, “ Harmonic mixing with an antiparallel diode pair, ” IEEE Trans. Microwave Theory Techniques, vol. MTT-23, no.8,pp. 667-673, Aug. 1975.
    [4] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, “A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair,” in IEEE MTT-S Int. Dig., vol. 2, pp. 879–882, 1991.
    [5] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y.H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18um CMOS technology”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp.95-97, Feb. 2009.
    [6] T. K. Johansen, J. Vidkjer, V. Krozer, A. Konczykowska, M. Riet, F. Jorge, and T. Durhuus, “A High Conversion-Gain Q-Band InP DHBT Subharmonic Mixer Using LO Frequency Doubler,” IEEE Trans. Microwave Theory Techniques, vol. 56, no. 3, March 2008.
    [7] J. H. Tsai, H. Y. Yang, T. W. Huang, and H. Wang, “A 30–100 GHz wideband sub-harmonic active Mixer in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 554-556, Aug. 2008.
    [8] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A 23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 679–681, Sep. 2007.
    [9] J. H. Tsai, and T. W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Techniques, vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
    [10] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9–31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257-2264, Oct. 2006.
    [11] B. H. Lee, S. C. Kim, M. K. Lee, W. S. Sul, B. O. Lim, W. Y. Uhm, and J. K. Rhee, “Q-band high conversion gain active sub-harmonic mixer,” Current Applied Physics, no. 4, pp. 69-73, 2004.
    [12] H.Zarei and D.Allstot, “A low-loss phase shifter MMIC in 180 nm CMOS for multiple-antenna receivers,” in Proc. Int. Solid-State Circuits Conf., Feb. 2004, pp. 392-393.
    [13] F. Ellinger, U. Mayer, M, Wickert, N. Jorem, J. Wagner, R. Eickhoff, I. Santamaria, C.Scheytt, and R. Kraemer, “Integrated adjustable phase shifters,” IEEE Microwave Magazine, vol. 11, no. 6, pp. 97–108, 2010.
    [14] David M. Pozar, Microwave Engineering, Third Edition: John Wiley & Sons, 2005.
    [15] Behzad Razavi, Design of Integrated Circuits for optical Communications, First Edition: McGraw-Hill, 2003.
    [16] Farbod Behbahani, Yoji Kishgami, John Leete, and Asad A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873-887, June 2001.
    [17] F. Ellinger, R. Vogt, and W. Bachtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481-486, April 2002.
    [18] Dong-Woo Kang, Hui Dong Lee, Chung-Hwan Kim, and Songcheol Hong, “Ku-band MMIC phase shifter using a parallel resonator with 0.18-μm CMOS technology,” IEEE Trans. Microwave Theory Techniques, vol. 54, no. 11, pp.294-301,Jan. 2006.
    [19] A. S. Nagra and R. A. York, “Distributed analog phase shifters with low insertion loss,” IEEE Trans. Microwave Theory Techniques, vol. 47, no. 9, pp. 1705–1711, Sep. 1999.
    [20] B. Pillans, S. Eshelman, A. Malczewski, J. Ehmke, and C. Goldsmith,“ X-band RF MEMS phase shifters,” IEEE Microw. Guided Wave Lett., vol. 9, no. 12, pp. 520–522, Dec. 1999.
    [21] M. Teshiba, R. V. Leeuwen, G. Sakamoto, and T. Cisco, “A SiGe MMIC 6-Bit PIN diode phase shifter,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 12, pp. 500–501, Dec. 2002.
    [22] C. F. Campbell and S. A. Brown, “A compact 5-bit phase-shifter MMIC for K-band satellite communication systems,” IEEE Trans. Microwave Theory Techniques, vol. 48, no. 12, pp. 2652–2656, Dec. 2000.
    [23] L. Wang, P. Sun, Y. You, A. Mikul, R. Bonebright, G. A. Kromholtz, and D. Heo, “Highly Linear Ku-band SiGe PIN Diode Phase Shifter in Standard SiGe BiCMOS Process”, IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp.37–39, Jan. 2010
    [24] T. M. Hancock and G. M. Rebeiz, “A 12-GHz SiGe phase shifter with integrated LNA,” IEEE Trans. Microwave Theory Techniques, vol. 53, no. 3, pp. 977–983, Mar. 2005.
    [25] H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. van der Weide, “Linear tunable phase shifter using a left handed transmission line,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 366–368, May 2005.
    [26] K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. Microwave Theory Techniques, vol. 48, no. 8, pp. 1313–1317, Aug. 2000
    [27] Z. Yonghong, F. Zhenghe, and F. Yong, “Ka-band 4 b phase shifter with low phase deviation,” in Proc. Int. Conf. Microw. Millim. Wave Technol., Aug. 2004, pp. 382–385.
    [28] J. G. Yang and K. Yang, “Ka-band 5-Bit MMIC phase shifter using InGaAs PIN switching diodes,” IEEE Microw. Wireless Compon. Lett.,vol. 21, no. 3, pp. 151–153, Mar. 2011.
    [29] D. Kang, J. Kim, B. Min, and G. M. Rebeiz, “Single and four-elementband transmit/receive phased-array silicon RFICs With 5-bit amplitude and phase control,” IEEE Trans. Microwave Theory Techniques, vol. 57, no. 12, pp. 3534–3543, Dec. 2009
    [30] “Code of federal regulations, title 47–telecommunication, chapter I,” Federal Commun. Commission, pt.15—Radio Frequency Devices, secs.15.515 and 15.521, 2004.
    [31] D. Lu, D. Rutledge, M. Kovacevic, and J. Hacker, “A 24 GHz patch array with a power amplifier/low-noise amplifier MMIC,” Int. J. Infrared Millim. Waves, vol. 23, pp. 693–704, May 2002.
    [32] X. Guan and A. Hajimiri, “A 24 GHz CMOS front-end,” in Eur. SolidState Circuits Conf. Tech. Dig., Sept. 2002, pp. 155–158.
    [33] I. Gresham, A. Jenkins, R. Egri, C. Eswarappa, F. Kolak, R. Wohlert, J. Bennett, and J. Lanteri, “Ultra wide band 24 GHz automotive radar front-end,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2003, pp. 369–372.
    [34] Hsieh-Hung Hsieh, Ying-Chih Hsu, and Liang-Hung Lu, “A 15/30-GHz Dual-Band Multiphase Voltage-Controlled Oscillator in 0.18- μm CMOS,” IEEE Trans. Microwave Theory Techniques, vol.55, no.3, pp.474-483, March 2007
    [35] Ja-Yol Lee, Sang-Heung Lee, Haecheon Kim, and Hyun-Kyu Yu, “A 28.5–32-GHz Fast Settling Multichannel PLL Synthesizer for 60-GHz WPAN Radio, ” IEEE Trans. Microwave Theory Techniques, vol.56, no.5, pp.1234-1246, May 2008
    [36] J. O. Plouchart, J. Kim, V. Karam, R. Trzcinski, and J. Gross, “Performance variations of a 66 GHz static CML divider in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 2142-2151.
    [37] T. N. Luo, S. Y. Bai, and Y. J.E. Chen, “77 GHz CMOS injection-locked Miller frequency divider,” Electron. Lett., vol. 45, no. 1, pp. 57-59, Jan. 2009.
    [38] T.-N. Luo, S.-Y. Bai, Y.-J.E. Chen, “A 60-GHz 0.13-μm CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech.,vol. 56, no.11, pp.2409-2415, Nov. 2008.
    [39] S. L. Jang, J. C. Luo, C. W. Chang, C. F. Lee, and J. F. Huang, “LC-tank Colpitts injection-locked frequency divider with even and odd modulo,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 113-115, Feb. 2009.
    [40] Y.-T. Chen, M.-W. Li, H.-C. Kuo, T.-H. Huang and H.-R. Chuang, “Low-voltage K-Band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech.,vol. 60, no. 1, pp. 60-67, Jan. 2012.
    [41] C. Kromer, G. von Buren, G. Sialm, T. Morf, F. Ellinger, and H. Jackel, “A 40-GHz static frequency divider with quadrature outputs in 80-nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp.564–566, Oct. 2006.
    [42] H. Wu and L. Zhang, “A 16-18 GHz 0.18 μm Epi-CMOS divide-by-3 injection-locked frequency divider, ” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 2482-2491, 2006.

    無法下載圖示 校內:2014-09-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE