| 研究生: |
郭益彰 Kuo, Yi-Chang |
|---|---|
| 論文名稱: |
以非線性k-ε模式模擬三維平板混合紊流場 Simulation of 3-D Turbulent Planar Mixing Layer Using Nonlinear k-ε model |
| 指導教授: |
徐子圭
Hsu, Tzu-Kuei 張克勤 Chang, Keh-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 紊流 、模式 、非線性 |
| 外文關鍵詞: | Mixing Layer, model, Turbulence |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用橢圓形式的 RANS 方程式來模擬平板混合紊流場從紊流狀態發展到自我保持區域的過程,並使用非線性渦流黏滯係數模式來取代 Boussinesq 假說計算其中的雷諾應力。
所以本文將根據李權庭(2004)以熱線測速儀量測平板混合紊流場所得到的實驗數據,使用(1) standard k-ε model、(2) Abe (2003) 的模式、(3) GS (1993) 及(4) Rahman (2006) 的顯式代數雷諾應力模式來模擬包括(1) r=0.62 以及(2) r=0.39 的流場,並將這些結果與實驗數據作比較。
模擬結果顯示使用非線性渦流黏滯係數模式可以得到比 Boussinesq 假說更為準確的雷諾應力,但所模擬到的雷諾應力及紊流動能其變化幅度仍不及實驗值。
An elliptic set of Reynolds-averaged governing equations are used for the simulation of flow from the developing to self-preserved regions of the turbulent planar mixing layer. Two cases with r=0.62 and 0.39 which were experimentally investigated by Li (2004) are numerically studied.
From RANS turbulence models, including the standard k-ε model which is under the Boussinesq hypothesis, the explicit algebraic stress model of GS (1993), the nonlinear eddy-viscosity model of Abe (2003), and the low- Reynolds-number explicit algebraic stress model of Rahman (2006), are tested and their predictions of flow properties are compared with the measurement data of Li (2004) made by the hot-wire anemometry.
The comparison results show that the models associated with nonlinear eddy-viscosity formulation perform better on the predictions of the Reynolds stresses than the model associated with the Boussinesq hypothesis (i.e., standard k-ε model). Nevertheless, there still exist remarkable underpredicti- ons of the Reynolds stresses and the turbulent kinetic energy for all tested turbulence models in comparison with the measured data of Li (2004).
[1] Abe, K., Jang, Y. J. and Leschziner, M. A., “An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models,” Int. J. Heat Fluid Flow, Vol. 24, pp.181–198. (2003)
[2] Chang, K. C., Wang, M. R., Wu, W. J. and Liu Y. C., “Theoretical and experimental study on two-phase structure of planar mixing layer,” AIAA J., Vol. 31, pp. 68–74. (1993)
[3] Gatski, T. B., Speziale, C. G., “On explicit algebraic stress models for complex turbulent flows,” J. Fluid Mech., Vol. 254, pp. 59–78. (1993)
[4] Launder, B. E., Spalding, D. B., “The numerical computation of turbulent flow,” Comput. Methods Appl. Mech. Eng. Vol. 3, pp. 269–289. (1974)
[5] Launder, B.E., Reece, G.J. & Rodi, W., “Progress in the development of a Reynolds stress turbulence closure,” Numer. Heat Transfer, vol. 7, pp. 147–163. (1984)
[6] Patankar, S. V., “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Washington, D. C., (1984)
[7] Pope, S. B., “A more general effective-viscosity hypothesis,” J. Fluid Mech., Vol. 72, part 2, pp. 331–340. (1975)
[8] Rahman, M. M., “A Low-Reynolds Number Explicit Algebraic Stress Model,” PhD thesis, University of London. (1972)
[9] Rodi, W., “The prediction of free turbulent boundary layers by use of a two equation model of turbulence,” PhD thesis, University of London. (1972)
[10] Rotta, J. C., “Statistische Theorie nichthomogener Turbulenz,” Z. Phys, Vol. 129, pp. 547–72 (1951)
[11] Vandoormaal, J. P., Raithby, G. D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Comput. Methods Appl. Mech. Eng. Vol. 3, pp. 269-289. (1974)
[12] Wallin, S., “An explicit algebraic Reynolds stress models for incompressible and compressible turbulent flows,” J. Fluid Mech., vol. 403, pp. 89–132. (2000)
[13] 李權庭, “平板混合紊流結構之實驗分析,” 國立成功大學航空太空工程研究所碩士論文 (2004)
[14] 許志宏, “含顆粒碰撞機制之氣體-顆粒兩相流場模擬,” 國立成功大學航空太空工程研究所博士論文 (2005)