簡易檢索 / 詳目顯示

研究生: 郭益彰
Kuo, Yi-Chang
論文名稱: 以非線性k-ε模式模擬三維平板混合紊流場
Simulation of 3-D Turbulent Planar Mixing Layer Using Nonlinear k-ε model
指導教授: 徐子圭
Hsu, Tzu-Kuei
張克勤
Chang, Keh-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 60
中文關鍵詞: 紊流模式非線性
外文關鍵詞: Mixing Layer, model, Turbulence
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用橢圓形式的 RANS 方程式來模擬平板混合紊流場從紊流狀態發展到自我保持區域的過程,並使用非線性渦流黏滯係數模式來取代 Boussinesq 假說計算其中的雷諾應力。
    所以本文將根據李權庭(2004)以熱線測速儀量測平板混合紊流場所得到的實驗數據,使用(1) standard k-ε model、(2) Abe (2003) 的模式、(3) GS (1993) 及(4) Rahman (2006) 的顯式代數雷諾應力模式來模擬包括(1) r=0.62 以及(2) r=0.39 的流場,並將這些結果與實驗數據作比較。
    模擬結果顯示使用非線性渦流黏滯係數模式可以得到比 Boussinesq 假說更為準確的雷諾應力,但所模擬到的雷諾應力及紊流動能其變化幅度仍不及實驗值。

    An elliptic set of Reynolds-averaged governing equations are used for the simulation of flow from the developing to self-preserved regions of the turbulent planar mixing layer. Two cases with r=0.62 and 0.39 which were experimentally investigated by Li (2004) are numerically studied.
    From RANS turbulence models, including the standard k-ε model which is under the Boussinesq hypothesis, the explicit algebraic stress model of GS (1993), the nonlinear eddy-viscosity model of Abe (2003), and the low- Reynolds-number explicit algebraic stress model of Rahman (2006), are tested and their predictions of flow properties are compared with the measurement data of Li (2004) made by the hot-wire anemometry.
    The comparison results show that the models associated with nonlinear eddy-viscosity formulation perform better on the predictions of the Reynolds stresses than the model associated with the Boussinesq hypothesis (i.e., standard k-ε model). Nevertheless, there still exist remarkable underpredicti- ons of the Reynolds stresses and the turbulent kinetic energy for all tested turbulence models in comparison with the measured data of Li (2004).

    誌謝 I 摘要 II ABSTRACT III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 VIII 第一章緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1 RANS 方程式 3 1.2.2 Boussinesq 假說 3 1.2.3代數模式 4 1.2.4單方程式模式 4 1.2.5雙方程式模式 4 1.2.6非線性模式 5 1.2.7顯式代數雷諾應力模式(ERASM) 5 1.2.8以 EARSM 為構成方程式的雙方程式模式 6 1.3研究目的 7 第二章物理問題與數學模式 8 2.1物理問題簡介 8 2.2數學模式 9 2.2.1 standard k-ε model 10 2.2.2 GS EARSM 10 2.2.3 Abe 模式 13 2.2.4 Rahman EARSM 14 2.2.5消除低雷諾數效應 15 第三章 數值方法 17 3.1演算法 17 3.2計算區域及邊界條件 17 3.3入口條件測試 18 3.4網格系統和格點測試 19 第四章 結果與討論 20 4.1模式驗證 20 4.2入口條件 21 4.3雷諾應力及紊流動能 21 4.4流場速度 23 4.5混合長度 23 4.5三維效應的影響 24 第五章 結論與未來工作 25 5.1結論 25 5.2未來工作 25 參考文獻 26 附錄 FLUENT 外加紊流模式的步驟 28

    [1] Abe, K., Jang, Y. J. and Leschziner, M. A., “An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models,” Int. J. Heat Fluid Flow, Vol. 24, pp.181–198. (2003)
    [2] Chang, K. C., Wang, M. R., Wu, W. J. and Liu Y. C., “Theoretical and experimental study on two-phase structure of planar mixing layer,” AIAA J., Vol. 31, pp. 68–74. (1993)
    [3] Gatski, T. B., Speziale, C. G., “On explicit algebraic stress models for complex turbulent flows,” J. Fluid Mech., Vol. 254, pp. 59–78. (1993)
    [4] Launder, B. E., Spalding, D. B., “The numerical computation of turbulent flow,” Comput. Methods Appl. Mech. Eng. Vol. 3, pp. 269–289. (1974)
    [5] Launder, B.E., Reece, G.J. & Rodi, W., “Progress in the development of a Reynolds stress turbulence closure,” Numer. Heat Transfer, vol. 7, pp. 147–163. (1984)
    [6] Patankar, S. V., “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Washington, D. C., (1984)
    [7] Pope, S. B., “A more general effective-viscosity hypothesis,” J. Fluid Mech., Vol. 72, part 2, pp. 331–340. (1975)
    [8] Rahman, M. M., “A Low-Reynolds Number Explicit Algebraic Stress Model,” PhD thesis, University of London. (1972)
    [9] Rodi, W., “The prediction of free turbulent boundary layers by use of a two equation model of turbulence,” PhD thesis, University of London. (1972)
    [10] Rotta, J. C., “Statistische Theorie nichthomogener Turbulenz,” Z. Phys, Vol. 129, pp. 547–72 (1951)
    [11] Vandoormaal, J. P., Raithby, G. D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Comput. Methods Appl. Mech. Eng. Vol. 3, pp. 269-289. (1974)
    [12] Wallin, S., “An explicit algebraic Reynolds stress models for incompressible and compressible turbulent flows,” J. Fluid Mech., vol. 403, pp. 89–132. (2000)
    [13] 李權庭, “平板混合紊流結構之實驗分析,” 國立成功大學航空太空工程研究所碩士論文 (2004)
    [14] 許志宏, “含顆粒碰撞機制之氣體-顆粒兩相流場模擬,” 國立成功大學航空太空工程研究所博士論文 (2005)

    下載圖示 校內:立即公開
    校外:2008-08-27公開
    QR CODE