簡易檢索 / 詳目顯示

研究生: 盧德謙
Lu, Te-Chien
論文名稱: 可量測材料聲波反射及透射係數的充水阻抗管之發展與應用
Development and applications of water-filled impedance tube for measuring acoustic reflection and transmission coefficients of material
指導教授: 黃清哲
Huang, Ching-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 66
中文關鍵詞: 充水阻抗管三參數校正法橡膠多孔性複合材質試片反射係數透射係數
外文關鍵詞: Water-filled impedance tube, Three-parameter-calibration method, Porous rubber test sample, Acoustic reflection and transmission coefficients
相關次數: 點閱:46下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究依據ASTM (2006)設計規範並應用三參數校正法,發展出可用來量測材料在水中的聲波反射與透射係數的直立式充水阻抗管。本研究所發展的充水阻抗管分為下管與上管兩部分,並於兩管之間裝設套管及上下夾片,作為置放受試材料處之用。為了測試所發展的阻抗管量測系統,本研究首先在三個不同天量測自由液面聲波反射係數,所得反射係數振幅相當一致,主要介於0.98到1.02之間,與理論值1.0非常接近,顯示本研究所發展的充水阻抗量測系統在量測反射係數方面,具有很好的準確性與可重複性。此外,為了驗證利用本研究所發展的阻抗管量測材料所得的反射係數具可重複性,本研究也於下管中,在三個不同天量測一橡膠多孔性複合材質試片的反射係數,包含其振幅及相位,結果顯示三個不同天所得反射係數的值非常接近。接著本研究在阻抗管中量測聲波通過上述材料試片的反射係數及透射係數,分別以同一天三不同時段以及三個不同天進行實驗的方式,測試實驗結果的可重複性。上述不同實驗所得反射係數及透射係數結果重複性皆非常高。此外,文中亦比較了受試材料其後端介質分別為空氣以及水時,反射係數的差異。上述實驗結果顯示本研究所開發的充水阻抗管可用來量測材料在水中的聲波反射與透射係數。

    Based on the standard ASTM test method (2006) and the three-parameter-calibration method, in this study, a vertical water-filled impedance tube is developed for the purpose of measuring the acoustic reflection and transmission of materials. The impedance tube consisted of a lower and an upper tube, and a pipe casing with upper and lower clips was used to combine the two tubes and to install the test material. First of all, the developed impedance tube was used to measure the sound reflection coefficient near the free surface in the lower tube on three different days. The measured values showed good repeatability and ranged from 0.98 to 1.02, which was very close to the theoretical value of 1.0. A test sample made of porous rubber was also installed in the lower part of the impedance tube for the purpose of studying its acoustic reflection coefficient. The results obtained from the experiments carried out on three different days showed good repeatability in terms of both amplitude and phase. Finally, the reflection and transmission coefficients in the form of sound propagation through the test sample were measured, either three times on the same day, or once on three different days. Both the measured reflection and transmission coeffi-cients had high repeatability. Furthermore, the effects of the back-side medium of the test sample, either air or water, are briefly discussed. The experimental results demonstrate that the developed impedance measuring system can be used to obtain the underwater acoustic reflection and transmission coefficients of materials.

    摘要 I ABSTRACT II 致謝 VIII 目錄 IX 表目錄 XI 圖目錄 XI 符號 XIV 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 研究方法 4 1-4 論文架構 5 第二章 理論介紹 6 2-1 基本聲學參數介紹 6 2-2 圓管內平面波聲場特性 10 2-3 阻抗管相關設計理論及規範 13 2-4 轉移函數法 18 2-5 三參數校正法 21 第三章 實驗儀器配置與方法 27 3-1 不鏽鋼充水阻抗管規格及實驗參數 27 3-2 實驗相關儀器配置及受試材料介紹 28 3-2-1 實驗相關儀器配置 28 3-2-2 受試材料介紹 38 3-3 透射管系統之裝設注意事項以及氣泡對阻抗管之影響 39 3-3-1 透射管系統之裝設注意事項 39 3-3-2 氣泡對充水阻抗管內部波傳之影響 41 3-4 實驗的方法與步驟 43 第四章 結果與討論 48 4-1 實驗可重複性驗證 48 4-2 裝設透射管後之反射係數實驗及材料後端介質影響反射係數變化 51 4-2-1 裝設透射管後之反射係數實驗 51 4-2-2 材料後端介質對反射係數的影響 54 4-3 透射係數量測實驗 56 第五章 結論與建議 60 5-1 結論 60 5-2 建議 61 第六章 參考文獻 63

    [1] Bodén, H. and Åbom, M., "Influence of errors on the two‐microphone method for measuring acoustic properties in ducts," The Journal of the Acoustical Society of America, Vol. 79 (2), pp. 541-549, 1986.
    [2] Chung, J. Y. and Blaser, D. A., "Transfer function method of measuring in‐duct acoustic properties. I. Theory," The Journal of the Acoustical Society of America, Vol. 68 (3), pp. 907-913, 1980.
    [3] Chung, J. Y. and Blaser, D. A., "Transfer function method of measuring in‐duct acoustic properties. II. Experiment," The Journal of the Acoustical Society of America, Vol. 68 (3), pp. 914-921, 1980.
    [4] Corbett III, S. S., "A two-hydrophone technique for measuring the complex reflectivity of materials in water-filled tubes," DTIC Document1982, 1982.
    [5] Del Grosso, V. A., "Analysis of multimode acoustic propagation in liquid cylinders with realistic boundary conditions - application to sound speed and absorption measurements," Acta Acustica united with Acustica, Vol. 24 (6), pp. 299-311, 1971.
    [6] Dunlop, J. I., "Measurement of acoustic attenuation in marine sediments by impedance tube," The Journal of the Acoustical Society of America, Vol. 91 (1), pp. 460-469, 1992.
    [7] Gibiat, V. and Laloë, F., "Acoustical impedance measurements by the two‐microphone‐three‐calibration (TMTC) method," The Journal of the Acoustical Society of America, Vol. 88 (6), pp. 2533-2545, 1990.
    [8] Jones, M. G. and Stiede, P. E., "Comparison of methods for determining specific acoustic impedance," The Journal of the Acoustical Society of America, Vol. 101 (5), pp. 2694-2704, 1997.
    [9] Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., Fundamentals of acoustics. ISBN 0-471-84789-5. Wiley-VCH, 1999.
    [10] Lafleur, L. D. and Shields, F. D., "Low‐frequency propagation modes in a liquid‐filled elastic tube waveguide," The Journal of the Acoustical Society of America, Vol. 97 (3), pp. 1435-1445, 1995.
    [11] Seybert, A. F. and Ross, D. F., "Experimental determination of acoustic properties using a two‐microphone random‐excitation technique," The Journal of the Acoustical Society of America, Vol. 61 (5), pp. 1362-1370, 1977.
    [12] Seybert, A. F. and Soenarko, B., "Error analysis of spectral estimates with application to the measurement of acoustic parameters using random sound fields in ducts," The Journal of the Acoustical Society of America, Vol. 69 (4), pp. 1190-1199, 1981.
    [13] ASTM, "Standard Test Method for Impedance and Absorption of Acoustical Materials by the Impedance Tube Method," ed: ASTM International, 1998.
    [14] ASTM (2006). “Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system,” ASTM E1050-98 (American Society for Testing and Ma-terials, West Conshohocken, PA 19428-2959, United States).
    [15] Wilson, P. S., Sound propagation and scattering in bubbly liquids. Ph.D. Dissertation, College of Engineering, Boston University, 2002.
    [16] Wilson, P. S., Roy, R. A., and Carey W. M., "An improved water-filled impedance tube," The Journal of the Acoustical Society of America, Vol. 113 (6), pp. 3245-3252, 2003.
    [17] Barnard, Andrew R., and Mohan D. Rao. "Measurement of sound transmission loss using a modified four microphone impedance tube." Proceedings of the ASME Noise Control and Acoustics Division (Noise-Con’04), 2004.
    [18] Jung, Sung Soo, et al. "Measurement of sound transmission loss by using impedance tubes." Journal of the Korean Physical Society, Vol.53(2), pp. 596-600, 2008.
    [19] Feng, Leping. "Modified impedance tube measurements and energy dissipation inside absorptive materials." Applied acoustics, Vol.74(12), pp. 1480-1485, 2013.
    [20] Fu, Y., Fischer, J., Pan, K., Yeoh, G.H., and Peng, Z.. "Underwater sound absorption properties of polydimethylsiloxane and carbon nanotube com-posites with steel plate backing." Appl.Acous., Vol. 171. https://doi.org/10.1016/j.apacoust.2020.107668, 2021.
    [21] 朱金華, 王源升, 文慶珍, 姚樹人, “水聲吸聲高分子材料的發展及應用,” 高分子材料科學與工程, 第21卷第4期, 46-50頁, 2005.
    [22] 周城光, 白國鋒, 劉碧龍, 李曉東, "充水阻抗管中测量材料聲學性能的校准方法研究," 聲學學報, 第35卷第2期, 154-161頁, 2010.
    [23] 姜聞文, 陳光冶, 朱彥, “静水壓變化下膠結構吸聲性能的計算與分析,” 噪聲與振動控制, 第26卷第5期, 55-57頁, 2006.
    [24] 董昌銘, 利用充水阻抗管及三參數校正法量測材料在水中的聲音阻抗, 碩士論文, 水利及海洋工程學系, 成功大學, 2017.
    [25] 鍾冠閔, 密閉式充水阻抗管之研發與應用, 碩士論文, 水利及海洋工程學系, 成功大學, 2019.
    [26] 黃清哲, 林彥岑, 張宏煜, 田宗謨, 許泰文, "水中聲波通過氣泡幕衰減特性實驗探討," 海洋工程學刊, 第16卷第1期,43-53頁, 2016.
    [27] 簡志宇, 以注水彈性阻抗管測量材料之水中聲學特性之研究, 碩士論文, 工程科學及海洋工程學研究所, 臺灣大學, 2005.

    下載圖示 校內:2024-07-15公開
    校外:2024-07-15公開
    QR CODE