| 研究生: |
丁一釗 Ding, I-Chao |
|---|---|
| 論文名稱: |
可調控待克芬那釋放之光應答型微針應用於病人自控式疼痛治療 On-off switchable release of diclofenac from light-responsive microneedles for patient-controlled pain therapy |
| 指導教授: |
陳美瑾
Chen, Mei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 光應答型微針 、近紅外光 、控制釋放 |
| 外文關鍵詞: | Light-responsive microneedle, Near-infrared light, On-demand controlled release |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用離心製程製備出水溶性高分子針尖結合鐘狀微載體聚己內酯(polycaprolactone, PCL)之新一代光應答型微針。將微載體包覆止痛藥物待克芬那(diclofenac)及光敏劑靛青綠(indocyanine green, ICG),光敏劑可在吸收近紅外光後將其轉換為熱能,加熱聚己內酯使其熔化進而釋放裝載藥物。由於純PCL微針有其較弱之機械強度,新一代微針構型藉由針尖高強度之水溶性高分子提升整體強度,於穿刺時將鐘狀微載體聚己內酯一併刺入,使PCL完整鑲嵌於皮膚中達到有效之藥物釋放。由材料測試機測試結果顯示,微針之機械強度比純聚己內酯微針有明顯上升,當微針形變量300 µm時,承受力量約為純聚己內酯微針之4倍。經由體外皮膚穿刺結果證實,穿刺深度可達700-750 m。在近紅外光照光實驗中,穿刺後之微針在接受不同照光模式,微針長度隨著照光時間增長而逐漸熔化變短。體外藥物釋放實驗證實,微針僅在照射近紅外光時才釋放藥物,於連續式照光實驗中,控制照光溫度為48 C,強度5.0 W/cm2之808-nm雷射,發現藥物釋放量隨照光時間增加而有等比例上升的趨勢。設定微針受近紅外光照射達48 C後維持恆溫3分鐘為一照光週期進行'間歇式照射'測試,結果顯示藥物釋放之劑量可隨週期增加呈階梯式上升(每個週期釋放21 ± 1 % (n = 5)之Diclofenac;23 ± 2 % (n = 5)之ICG),且能重複驅動釋放4次。由動物實驗發現,此光應答型微針可成功的刺入鼠皮,穿刺深度達800-1200 m並將鐘狀PCL微載體鑲嵌於活體中,證實確實可成功刺穿角質層並鑲嵌於皮膚中。此外,此微針依照光與否有其釋放藥物之開關效應及準確經皮傳輸藥物之能力。
In this study, we developed a patch-dissolvable microneedles which combine PVP/PVA tips with bell-shaped PCL structures by a new two-step molding process.We used biodegradable polycaprolactone (PCL), encapsulated analgesic agent – diclofenac and indocyanine green (ICG), to fabricate near-infrared (NIR) light-responsive polymer microneedle (MN). After absorbed NIR, ICG loaded in MN could convert the energy into heat to melt PCL and release drugs We focused on the feasibility of MN delivering analgesic agents transdermally and its mechanical strength. MN made by polycarprolatone have low mechanical strength. The material testing machine tests showed that we could improve the mechanical strength of MN by new fabrication. At the displacement of 0.3 mm, the force of PVP/PVA-PCL MNs is four times higher than PCL’s. The skin insertion tests proved that the microneedles could be fully inserted into the skin with penetration depth of 700-750 m in vitro test and 800–1200 µm in vivo test. The MNs with ICG can be melted and become smaller by NIR irradiation. In vitro drug test demonstrated that the amount of released drugs can be controlled accurately by adjusting the irradiation periods and exposure time.The continuous irradiation test demonstrated the amount of released drug increased with irradiation time. The amount of released drugs can be controlled by adjusting the irradiation periods, and the release of drugs exhibited in a stepwise function (21 ± 1 % of diclofenac, 23 ± 2 % of ICG) by intermittent irradiation.
[1] Ishihara K, Kobayashi M, Shinohara I. Control of insulin permeation through a polymer membrane with responsive function for glucose. Makromol Chem Rapid Commun 4. 1983; 327-331.
[2] Rothen-Weinhold A, Besseghir K, Vuaridel E, Sublet E, Oudry N, Gurny R. Stability studies of a somatostatin analogue in biodegradable implants. Int J Pharm. 1999; 178: 213-21.
[3] Crotts G, Sah H, Park T. Adsorption determines in-vitro protein release rate from biodegradable microspheres: quantitative analysis of surface area during degradation. J Control Release. 1997; 47: 101-111.
[4] Sharif S, O’Hagan DT. A comparison of alternative methods for the determination of the levels of proteins entrapped in poly(lactide-co-glycolide) microparticles. Int J Pharm. 1995;115: 259-263.
[5] Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Langer R. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm Res. 1991; 8: 713-720.
[6] McCarron PA, Woolfson AD, Keating SM. Sustained release of 5-fluorouracil from polymeric nanoparticles. J Pharm Pharmacol. 2000; 52: 1451-9.
[7] Brem H, Walter K, Langer R. Polymers as controlled drug delivery devices for the treatment of malignant brain tumors. Em J Pharmacol Biopharmacol. 1993; 39: 2-7.
[8] Garcia J, Dorta MJ, Munguia O, Llabres M, Farina JB. Biodegradable laminar implants for sustained release of recombinant human growth hormone. Biomaterials. 2002; 23: 4759-4764.
[9] Webber WL, Lago F, Thanos C, Mathiowitz E. Characterization of soluble, salt-loaded degradable PLGA films and their release of tetracycline. J Biomed Mater Res. 1998; 41: 18-29.
[10] Shah SS, Cha Y, Pitt CG. Poly (glycolic acid-co-DL-lactic acid): diffusion or degradation controlled drug delivery. J Control Rel. 1992; 18: 261-270.
[11] Tamada JA, Langer, R. Erosion kinetics of hydrolytically degradable polymers. Proc Natl Acad Sci USA. 1993; 90: 552-6.
[12] Zhou T, Lewis H, Foster RE, Schwendeman SP. Development of a multiple-drug delivery-implant for intraocular management of proliferative vitreoretinopathy. J Control Rel. 1998; 55: 281-95.
[13] Webber WL, Lago F, Thanos C, Mathiowitz E. Characterization of soluble, salt-loaded degradable PLGA films and their release of tetracycline. J Biomed Mater Res. 1998; 41: 18-29.
[14] Yoo JY, Kim JM, Khang G, Kim MS, Cho SH., Lee HB, Kim YS. Effect of lactide/glycolide monomers on release behaviors of gentamicin sulfate-loaded PLGA discs. Int J Pharm. 2004; 276: 1-9.
[15] Wang Y, Challa P, Epstein DL, Yuan F. Controlled release of ethacrynic acid from poly(lactide-co-glycolide) films for glaucoma treatment. Biomaterials. 2004; 25: 4279-85.
[16] Park JH, Allen MG, Prausnitz MR. Polymer microneedles for controlled-release drug delivery. Pharm Res. 2006; 23: 1008-19.
[17] Kim M, Jung B, Park JH. Hydrogel swelling as a trigger to releasebiodegradable polymer microneedles in skin. Biomaterials. 2012; 33: 668-78.
[18] Yang J. Stimuli-responsive drug delivery systems. Adv Drug Deliv Rev. 2012; 64: 965-6.
[19] Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev. 2001; 46: 125-48.
[20] Weissleder R. A learer vision for in vivo imaging. Nat Biotechnol. 2001; 19: 316-7.
[21] Honar AL, Kang KA. Effect of the source and detectoe configuration on the detectability of breast cancer. Comp Biochem Physiol A Mol Integr Physiol. 2002; 132: 9-15.
[22] Murkin JM, Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth. 2009; 103: i3-13.
[23] Bayazitoglu Y, Kheradmand S, Tullius TK. An overview of nanoparticle assisted laser therapy. Int J Heat Mass Tran. 2013; 67: 469-486.
[24] Ntziachristos V, Ripoll J, Wang LV, Weissleder R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 2005; 23: 313-20.
[25] Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nanotoday. 2007; 2: 18–29.
[26] Saxena V, Sadoqi M, Shao J. Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release. Int J Pharm. 2004; 278: 293-301.
[27] Taichamn GC, Hendry PJ, Wilbert JK. The Use of Cardio-Green for Intraoperative Vizualization of the Coronary Circulation: Evaluation of Myocardial Toxicity. Tex Heart I J. 1987; 14: 133-138.
[28] Ballou B, Ernst Lauren A, Waggoner Alan S. Fluorescence imaging of tumors in vivo. Curr Med Chem. 2005; 12: 795-805.
[29] Rao J, Dragulescu-Andrasi A, Yao H Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007; 18: 17-25.
[30] Cardillo JA, Jorge R, Costa RA, Nunes SM, Lavinsky D, Kuppermann BD, Tedesco AC, Farah ME. Experimental selective choriocapillaris photothrombosis using a modified indocyanine green formulation. Br J Ophthalmol. 2008; 92: 276-80.
[31] Yoneya S, Saito T, Komatsu Y, Koyama I, Takahashi K, Duvoll-Young J. Binding properties of indocyanine green in human blood. Invest Ophthalmol Visual Sci. 1998; 39: 1286-90.
[32] Desmettre T, Devoisselle JM, Mordon S Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 2000; 45: 15-27.
[33] Mordon S, Devoisselle JM, Soulie-Begu S, Desmettre T. Indocyanine green: physicochemical factors affecting its fluorescence in vivo. Microvasc Res. 1998; 55: 146-152.
[34] Paumgartner G, Probst P, Kraines R, Leevy CM. Kinetics of indocyanine green removal from the blood. Ann N Y Acad Sci. 1970; 170: 134-47.
[35] Zhang Y, Wang M. The Luminescent Properties and Photo-Decay of Sulfosalicylic Acid Doped ORMOSILs. Mater Lett. 2000; 42: 86-91.
[36] Saxena V, Sadoqi M, Shao J. Degradation Kinetics of Indocyanine Green in Aqueous Solution. J Pharm Sci. 2003; 92: 2090-7.
[37] Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 2000; 45: 15-27.
[38] Landsman ML, Kwant G, Mook GA, Zijlstra WG. Light-Absorbing Properties, Stability, and Spectral Stabilization of Indocyanine Green. J Appl Physiol. 1976; 40: 575-83.
[39] Cleeland CS. The impact of pain with cancer. Cancer. 1984; 54: 2635-41.
[40] Ferrell BR, Grant M, Chan J, Ahn C, Ferrell BA.The impact of cancer pain education on family caregivers of elderly patients.Oncology Nursing Forum. 1995; 22: 1211-8.
[41] Ferrell BR, Rhiner M, Ferrell BA. Development and implementation of pain education program. Cancer Supplement. 1993; 72: 3426-35.
[42] Ger LP, Ho ST, Cheng CH. The prevalence and severity of cancer pain: A study of new-diagnosed cancer patients in Taiwan. Journal of Pain and Symptom Management. 1998; 15: 285-293.
[43] Schug SA, Zech D, Grond S, Jung H, Meuser T, Stobbe B. A long-term survey of morphine in cancer pain patients. Journal of Pain and Symptom Management. 1992; 7: 259-66.
[44] Chaiamnuay S, Allison JJ, Curtis JR. Risks versus Benefits of Cyclooxygenase-2-selective nonsteroidal antiinflammatory drugs. Am J Health Syst Pharm. 2006; 63: 1837-51.
[45] Perrin D A. Handbook of biodegradable plastic. New Yor : Harwood Academic Publishers. 1997; 326.
[46] Ikada Y, Tsuji H. Biodegrable polyesters for medical and ecological application. Macromolecular Rapid Communication. 2000; 21: 117-132.
[47] Agrawal CM, Ray RB. Biodegrable polymeric scaffolds for musculoskeletal tissule engineering. Journal of Biomedical Materials Research. 2001; 55: 141-50.
[48] Wu Chin-San. Performance of an Acrylic Acid Grafted Polycaprolact-one/Starch Composite:Characterization and Mechanical Properties. Journal of Applied Polymer Science. 2003; 89: 2888-95.
[49] Yew GH, Mohd Yusof AM, Mohd Ishak ZA, Ishiaku US. Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym. Degrad Stab. 2005; 90: 488-500.
[50] Rosa DS, Lopes DR, Calil MR. Thermal properties and enzymatic degradation of blends of poly(ε-caprolactone)/with starches. Polym Testing 2005; 24: 756-61.
[51] Lanza RP, Langer R, Vancanti J. Principles of tissue engineering.2nd edition, Academic Press, 2000.
[52] Cai Q, Bei J, Wang S. Synthesis and degradation of a tri-component copolymer derived from glycolide, L-lactide and ε-caprolactone. J. Biomater Sci Polym Edn. 2000; 11: 273-88.
[53] Loh XJ, Peh P, Liao S, Sng C, Li J. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J Control Release. 2010; 143: 175-182.
[54] Arote R, Kim TH, Kim YK, Hwang SK, Jiang HL, Song HH, Nah JW, Cho MH, Cho CS. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials. 2007; 28: 735-44.
[55] Richard AG. Biodegradable Polymers for the Environment. Science. 2002; 297: 803-807.
[56] http://i-base.info/guides/changing/why-adherence-is-linked-to-drug-resistance
[57] Genina EA, Bashkatov AN, Simonenko GV, Odoevskaya OD, Tuchin VV, Altshuler GB. Low-Intensity Indocyanine-Green Laser Phototherapy of Acne Vulgaris: Pilot Study. J Biomed Opt. 2004; 9: 828-34.
[58] Huynh CT, Lee DS. Controlled Release. Encyclopedia of Polymeric Nanomaterials. 2014; 314.