| 研究生: |
劉和振 Liu, He-Chen |
|---|---|
| 論文名稱: |
跑步過程中不同著地模式對於身體加速訊號與攝氧量之影響 The Effects of Landing Modes During Running on Body Acceleration and Oxygen Consumption |
| 指導教授: |
黃滄海
Huang, Tsang-Hai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 運動健康與休閒管理碩士在職專班 Continuing Graduate Program in Sport, Health and Leisure Management |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 35 |
| 中文關鍵詞: | 長距離跑步 、著地 、能量代謝 、加速度 、慣性感測原件 |
| 外文關鍵詞: | distance run, strike, energy metabolism, acceleration, inertial measurement unit |
| 相關次數: | 點閱:127 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的: 1. 探討跑步過程中不同著地的方式,對足部及質量重心加速度的影響;2.探討跑步過程中不同著地的方式,對攝氧量的影響。方法:本研究為個案研究,受試者為長跑選手,個人馬拉松最佳成績為2小時50分。進行三次不同固定速度之跑步機量測,三次分別以每公里四分十秒、四分五秒、四分零秒速度進行六公里之跑步機測驗,每次跑步測驗中,每一公里以前足著地及後足著地交替進行。測驗過程中,全程以氣體分析儀 (Vmax 29, SensorMedics, USA)量測受試者之攝氧量及呼吸交換率 (respiratory exchange ratio, RER)。同時,受試者也在兩腳足背及下背部份配戴九軸之慣性感測原件 (MTW Awinda, Xsens, Netherlands)收取跑步過程中之加速度訊號。統計分析以重複量數T檢定比較兩種著地姿勢下之能量代謝與加速度訊號指標。結果: 前足著地 (53.9 1.7 ml/kg/min) 與後足著地 (54.8 1.7 ml/kg/min) 的攝氧量達顯著差異 (p< .05);RER則為顯示前足著地 (0.927 0.017) 有低於後足著地 (0.934 0.018) 之趨勢 (p=0.07)。此外,在三種不同穩定速度下的加速度峰值顯示,足部x軸之加速度值的前足著地振幅比後足著地振幅大 (p< .05),而在y軸及z軸則為後足著地振幅比前足著地振幅大 (p< .05);在三種不同穩定速度下的加速度峰值,前足著地與後足著地的左腳與右腳兩側在x軸、y軸與z軸之振幅,均達顯著差異 (p< .05)。結論:研究顯示跑者攝氧量在後足著地時比前足著地高,RER的數值顯示出前足著地的能量來源傾向於使用較高比例之脂肪,亦即可節省較多之肝醣使用。由於本研究受試者為習慣前足著地之跑者,未來研究應進一步比較習慣兩種著地方式的跑者在執行不同著地跑步姿勢時之觸地時間、肌電圖與加速度訊號結合之差異。
Purpose: 1) To explore the impact of different landing modes on the acceleration of the foot and low back during running; 2) To explore the effects of different landing modes on the oxygen uptake during running. Method: This study is a case study. The subject is a long-distance runner with best personal record in marathon performance of 2 hour and 50 minutes, who was required to conduct two different foot strike patterns (e.g. forefoot landing and rearfoot landing) within a total of 6-km run. And, the subject repeated similar the test for three paces (e.g. 4:00/km, 4:05/km, and 4:10/km). During the test, oxygen uptake and respiratory exchange ratio (RER) were measured by a gas analyzer (Vmax 29, SensorMedics, USA). Simultaneously, the subject also wore a nine-axis inertial measurement unit (IMU) (MTW Awinda, Xsens, Netherlands) on low back and dorsum pedis of both feet to acquire acceleration signals during running test. Data of respiratory indices and acceleration signals were compared between forefoot and rearfoot landing strike by using a repeated-measures t-test. Results: The mean oxygen uptake during forefoot landing (53.9 1.7 ml/kg/min) is significantly lower than during rearfoot landing (54.8 1.7 ml/kg/min). And, the mean RER during forefoot landing run (0.927 0.017) is numerically lower than during rearfoot run (0.934 0.018) (p=0.070), suggested a lower ratio in glycogen expenditure. In addition, the x-axis acceleration amplitude of the forefoot strike was larger than that of the rearfoot strike (p< .05) during three paces run. And the x- and y-axis acceleration amplitude of the rearfoot strike was larger than that of the forefoot strike during three paces run (p< .05). In addition, there were significant differences as compared the three axes acceleration mean values between left foot and right of both foot (p< .05). Conclusion: In addition to different strike patterns shown in IMU data, the current study verified that the rearfoot strike is higher than the forefoot strike in energy expenditure. Future study would be worthy to integrate information of strike parameters (e.g. ground contact time) and electromyogram with acceleration signals in purpose of exploring different strike patterns during running.
一、中文部分
郭豐州(民107年1月18日)。2017台灣路跑場次統計與對岸馬拉松動態【運動筆記網】。取自:https://running.biji.co/index.php?q=news&act=info&id=97826&subtitle=%E3%80%90%E8%B3%BD%E4%BA%8B%E3%80%91%E9%83%AD%E8%80%81%E5%B8%AB%E7%9A%84%E8%B7%91%E6%AD%A5%E6%95%99%E5%AE%A4%E3%80%8B2017%20%E5%8F%B0%E7%81%A3%E8%B7%AF%E8%B7%91%E5%A0%B4%E6%AC%A1%E7%B5%B1%E8%A8%88%E8%88%87%E5%B0%8D%E5%B2%B8%E9%A6%AC%E6%8B%89%E6%9D%BE%E5%8B%95%E6%85%8B
二、西文部分
Ahn, A., Brayton, C., Bhatia, T., & Martin, P. (2014). Muscle activity and kinematics of forefoot and rearfoot strike runners. Journal of Sport and Health Science, 3(2), 102-112.
ARDIGO', L., Lafortuna, C., Minetti, A., Mognoni, P., & Saibene, F. (1995). Metabolic and mechanical aspects of foot landing type, forefoot and rearfoot strike, in human running. Acta Physiologica Scandinavica, 155(1), 17-22.
Aung, M. S., Thies, S. B., Kenney, L. P., Howard, D., Selles, R. W., Findlow, A. H., & Goulermas, J. Y. (2013). Automated detection of instantaneous gait events using time frequency analysis and manifold embedding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(6), 908-916.
Daoud, A. I., Geissler, G. J., Wang, F., Saretsky, J., Daoud, Y. A., & Lieberman, D. E. (2012). Foot strike and injury rates in endurance runners: a retrospective study. Medicine & Science in Sports & Exercise, 44(7), 1325-1334.
Di Michele, R., & Merni, F. (2014). The concurrent effects of strike pattern and ground-contact time on running economy. Journal of Science and Medicine in Sport, 17(4), 414-418.
Dugan, S. A., & Bhat, K. P. (2005). Biomechanics and analysis of running gait. Physical Medicine and Rehabilitation Clinics, 16(3), 603-621.
Eslami, M., Begon, M., Farahpour, N., & Allard, P. (2007). Forefoot–rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running. Clinical Biomechanics, 22(1), 74-80.
Folland, J. P., Allen, S. J., Black, M. I., Handsaker, J. C., & Forrester, S. E. (2017). Running technique is an important component of running economy and performance. Medicine and Science in Sports and Exercise, 49(7), 1412.
Foster, C., & Lucia, A. (2007). Running economy. Sports Medicine, 37(4), 316-319.
Gazeau, F., Koralsztein, J., & Billat, V. (1997). Biomechanical events in the time to exhaustion at maximum aerobic speed. Archives of Physiology and Biochemistry, 105(6), 583-590.
Hanley, B., Bissas, A., Merlino, S., & Gruber, A. H. (2019). Most marathon runners at the 2017 IAAF World Championships were rearfoot strikers, and most did not change footstrike pattern. Journal of Biomechanics, 92, 54-60.
Hasegawa, H., Yamauchi, T., & Kraemer, W. J. (2007). Foot strike patterns of runners at the 15-km point during an elite-level half marathon. Journal of Strength and Conditioning Research, 21(3), 888.
Hatchett, A., Armstrong, K., Parr, B., Crews, M., & Tant, C. (2018). The effect of a curved non-motorized treadmill on running gait length, imbalance and stride angle. Sports, 6(3), 58.
Hayes, P., & Caplan, N. (2012). Foot strike patterns and ground contact times during high-calibre middle-distance races. Journal of Sports Sciences, 30(12), 1275-1283.
Heiderscheit, B. C., Chumanov, E. S., Michalski, M. P., Wille, C. M., & Ryan, M. B. (2011). Effects of step rate manipulation on joint mechanics during running. Medicine and Science in Sports and Exercise, 43(2), 296.
Heise, G. D., Smith, J. D., & Martin, P. E. (2011). Lower extremity mechanical work during stance phase of running partially explains interindividual variability of metabolic power. European Journal of Applied Physiology, 111(8), 1777-1785.
Issekutz Jr, B., & Rodahl, K. (1961). Respiratory quotient during exercise. Journal of Applied Physiology, 16(4), 606-610.
Kasmer, M. E., Liu, X.-c., Roberts, K. G., & Valadao, J. M. (2013). Foot-strike pattern and performance in a marathon. International Journal of Sports Physiology and Performance, 8(3), 286-292.
Landreneau, L. L., Watts, K., Heitzman, J. E., & Childers, W. L. (2014). Lower limb muscle activity during forefoot and rearfoot strike running techniques. International Journal of Sports Physical Therapy, 9(7), 888.
Larson, P., Higgins, E., Kaminski, J., Decker, T., Preble, J., Lyons, D., . . . Normile, A. (2011). Foot strike patterns of recreational and sub-elite runners in a long-distance road race. Journal of Sports Sciences, 29(15), 1665-1673.
Mitschke, C., Zaumseil, F., & Milani, T. L. (2017). The influence of inertial sensor sampling frequency on the accuracy of measurement parameters in rearfoot running. Computer Methods in Biomechanics and Biomedical Engineering, 20(14), 1502-1511.
Moore, S., Schurr, K., Wales, A., Moseley, A., & Herbert, R. (1993). Observation and analysis of hemiplegic gait: swing phase. Australian Journal of Physiotherapy, 39(4), 271-278.
Nilsson, J., & Thorstensson, A. (1989). Ground reaction forces at different speeds of human walking and running. Acta Physiologica Scandinavica, 136(2), 217-227.
Perl, D. P., Daoud, A. I., & Lieberman, D. E. (2012). Effects of footwear and strike type on running economy. Med Sci Sports Exerc, 44(7), 1335-1343.
Rooney, B. D., & Derrick, T. R. (2013). Joint contact loading in forefoot and rearfoot strike patterns during running. Journal of Biomechanics, 46(13), 2201-2206.
Santos-Concejero, J., Tam, N., Granados, C., Irazusta, J., Bidaurrazaga-Letona, I., Zabala-Lili, J., & Gil, S. (2014). Interaction effects of stride angle and strike pattern on running economy. International Journal of Sports Medicine, 35(13), 1118-1123.
Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine, 34(7), 465-485.
Shiang, T.-Y., Hsieh, T.-Y., Lee, Y.-S., Wu, C.-C., Yu, M.-C., Mei, C.-H., & Tai, I.-H. (2016). Determine the foot strike pattern using inertial sensors. Journal of Sensors, 2016.
Strohrmann, C., Harms, H., & Troster, G. (2011). What do sensors know about your running performance? Paper presented at the 2011 15th Annual International Symposium on Wearable Computers.
van Werkhoven, H., Farina, K. A., & Langley, M. H. (2019). Using a soft conformable foot sensor to measure changes in foot strike angle during running. Sports, 7(8), 184.
Williams, D. S., McClay, I. S., & Manal, K. T. (2000). Lower extremity mechanics in runners with a converted forefoot strike pattern. Journal of Applied Biomechanics, 16(2), 210-218.
Williams, K. R., & Cavanagh, P. R. (1987). Relationship between distance running mechanics, running economy, and performance. Journal of Applied Physiology, 63(3), 1236-1245.
Winter, D. A. (1980). Overall principle of lower limb support during stance phase of gait. Journal of Biomechanics, 13(11), 923-927.