研究生: |
吳育欣 Wu, Yu-Hsin |
---|---|
論文名稱: |
在腫瘤細胞內改變STAT1蛋白表現是否會影響腫瘤免疫反應 Will modulation of STAT1 in tumor cells influence tumor immune responses? |
指導教授: |
蘇五洲
Su, Wu-Chou |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 腫瘤細胞 、免疫反應 |
外文關鍵詞: | STAT1, tumor immune responses |
相關次數: | 點閱:69 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
STAT為一群轉錄因子,它們可以經由許多不同的細胞激素和生長因子刺激而活化。其中,持續活化態的STAT3在人類癌症常常可見,被認為可以促進腫瘤細胞的存活以及幫助逃避免疫系統的攻擊。另一方面,STAT家族的另一成員STAT1則有著與STAT3不同的功能;STAT1被認為可以促進細胞凋亡並且活化一些發炎相關的免疫反應。被活化之後的STAT1及STAT3可以分別形成同體異構物(STAT1: STAT1或是STAT3: STAT3)或是異體異構物(STAT1: STAT3)。STAT1: STAT1同體異構物和STAT3: STAT3同體異構物在調節基因時,常常結合在相似但是不相同的元素,這點也許可以解釋為何STAT1與STAT3具有孑然不同的生理功能。然而,STAT1與STAT3如何調節腫瘤細胞內免疫反應仍不清楚。在本研究中,我們假設在腫瘤細胞中,STAT1與STAT3之間的抗衡將會影響免疫反應的走向。我們以老鼠肺癌細胞Lewis lung carcinoma (LL2)做為腫瘤細胞使用。由於LL2細胞有表現持續活化態的STAT3,因此我們利用Lipofectamine轉染技術將STAT1送入LL2細胞內。我們建立了兩種細胞株: LL2-S1C及LL2-S1;前者過度表現持續活化態的STAT1 (STAT1C),後者過度表現單體態的STAT1蛋白。給予Interferon-(IFN-) 刺激發現,LL2、LL2-S1C及LL2-S1的細胞生長都不會被抑制,相反地,IFN-讓它們的生長更好。另一方面,給予Interleukin-6 (IL-6) 對於這些細胞的生長則沒有影響。進一步我們將這些細胞株分別經由皮下注射打入動物體內,觀察它們形成的腫瘤,發現LL2-S1C細胞明顯長的比較好。 接下來,我們利用西方點墨法檢測這些細胞株在經由IFN-或是IL-6刺激之後,細胞內STAT蛋白的表現;我們發現LL2-S1C細胞在IFN-刺激後,STAT5異常的活化;在IL-6刺激之後,LL2-S1C細胞有STAT1異常活化。為了進一步釐清由IFN-刺激之後造成的細胞增生,我們檢測了STAT5所調控的兩個下游基因: bcl-2及cyclin D1。而我們發現這二個蛋白的表現並沒有因為IFN-刺激而受到影響。另一方面,我們推論STAT1C在LL2-S1C細胞內可能與一些特定的蛋白結合而影響了STAT家族的活化,以致於在IFN-或是IL-6刺激之後會有異常的STAT蛋白被活化;因此,我們收集LL2、LL2-S1C及LL2-S1的細胞蛋白,經由免疫沉澱將與STAT1結合的蛋白分離之後,利用二維電泳 (2D-PAGE)以及蛋白質譜分析—MALDI-MS (Matrix-assisted Laser Desorption/Ionization-Mass Spectrometry)區分出特定表現在LL2-S1C的沉澱蛋白內的因子—alkaline phosphatase 3。而在這個系統中,alkaline phosphatase 3的生物功能需要進一步研究才能釐清。經由蘇木紫伊紅染色,我們發現在LL2-S1C及LL2-S1所產生的腫瘤中,浸潤的嗜中性球明顯比LL2所產生的腫瘤多。根據此結果,我們推論在表現持續活態STAT3的腫瘤細胞中,大量表現STAT1蛋白(不論是活化或非活化態)可能可以讓宿主的先天性免疫反應被回復。
在本研究中,我們發現,在表現持續活化態STAT3的腫瘤細胞中,給予持續活化態STAT1的過度表現,可能回復宿主的先天性免疫系統,然而在動物體內腫瘤的生長不會被抑制。我們偶然發現送入細胞內的STAT1C過量表現會造成LL2 細胞異常的STAT蛋白活化,進一步研究其機制也許能發現一些新的JAK/STAT訊息傳遞路徑的調節系統。
Abstract
STATs are a family of transcription factors that activated by various cytokine and growth factors. Among them, STAT3 is frequently activated in human tumors and implicated in promoting tumor cell survival and immune evasion. On the contrary, STAT1 is known to promote tumor cell apoptosis and activate immune responses. Activated STAT1 and STAT3 could form homodimer by themselves or heterodimer between each other. STAT1 and STAT3 homodimers bind selectively to very similar but not identical elements of genes, which is likely to account for their very different biological effects. However, how STAT1 and STAT3 cooperatively regulate tumor immune responses is still not clear. We hypothesize that the balance between STAT1 and STAT3 may influence tumor immune responses in cancer cells. In this study, we chose mouse Lewis lung carcinoma (LL2) cells as the tumor model. STAT3 is constitutively activated in LL2 cells. We have transfected LL2 cells with STAT1C (an active form of STAT1) and selected clones (LL2-S1C) those stably expressed the protein for further studies. Also we generated LL2-S1 cells which stably expressed free form STAT1 protein. Interferon- (IFN-) did not inhibit growth of LL2, LL2-S1 and LL2-S1C cells, and on the contrary, IFN-enhances growth of them. Interleulin-6 (IL-6) did not influence growth of these cells. LL2-S1C grew slower in vitro but faster in vivo than parental cells. Further we found that IFN- aberrantly activated STAT5 in LL2-S1C cells, but not LL2-S1 cells. And IL-6 aberrantly activated STAT1 in LL2-STAT1C cells. To elucidate why IFN--induced cell proliferation, we checked the expressions of bcl-2 and cyclin D1 that are downstream factors of STAT5. IFN- did not alter the expressions of both proteins. On the other hand, we infer that sequestration of some negative regulators of STAT by STAT1C may be the mechanism by which the specificity of STAT protein activation by receptor was altered. Celluar proteins of LL2, LL2-S1 and LL2-S1C cells were isolated and subjected to immunoprecipitation. The immunoprecipitated proteins were then separated by two-dimension gel electrophresis. Differentially expressed protein spots were picked up for mass spectrometry analysis. We identify that alkaline phosphatase 3 is differentially expressed in LL2-S1C proteins. The biologic function of alkaline phosphatase 3 in this system requires further studies.
There are only few neutrophils found in LL2 subcutaneous tumor, whereas, infiltration of neutrophils was easily found in LL2-S1 and LL2-S1C tumors. The results suggest increase STAT1 (free or active form) expression in a STAT3 active cancer cells may restore the innate immunity of host.
In this study, we found that over expression of STAT1 in LL2 cells that express constitutively active STAT3 may restore innate immunity but did not inhibit the tumor formation, especially in vivo. We incidentally found that STAT1C overexpression cause aberrant STAT activation in LL2 cells. Further studies on the underlying mechanisms may explore a novel regulatory system of JAK/STAT pathway.
Akira S (2000) Roles of STAT3 defined by tissue-specific gene targeting. Oncogene 19:2607-2611.
Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63-71.
Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563-591.
Beatty GL, Paterson Y (2000) IFN-gamma can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J Immunol 165:5502-5508.
Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19:2474-2488.
Briscoe J, Kohlhuber F, Muller M (1996) JAKs and STATs branch out. Trends Cell Biol 6:336-340.
Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109:1139-1142.
Bromberg J, Darnell JE, Jr. (2000) The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19:2468-2473.
Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JE, Jr. (1996) Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci U S A 93:7673-7678.
Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JE, Jr. (1998) Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 18:2553-2558.
Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE, Jr. (1999) Stat3 as an oncogene. Cell 98:295-303.
Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8:945-954.
Calo V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, Russo A (2003) STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 197:157-168.
Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS, Jove R (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10:105-115.
Cheng F, Wang HW, Cuenca A, Huang M, Ghansah T, Brayer J, Kerr WG, Takeda K, Akira S, Schoenberger SP, Yu H, Jove R, Sotomayor EM (2003) A critical role for Stat3 signaling in immune tolerance. Immunity 19:425-436.
Chin YE, Kitagawa M, Su WC, You ZH, Iwamoto Y, Fu XY (1996) Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272:719-722.
Choudhury GG, Ghosh-Choudhury N, Abboud HE (1998) Association and direct activation of signal transducer and activator of transcription1alpha by platelet-derived growth factor receptor. J Clin Invest 101:2751-2760.
Danial NN, Rothman P (2000) JAK-STAT signaling activated by Abl oncogenes. Oncogene 19:2523-2531.
Darnell JE, Jr. (1997) STATs and gene regulation. Science 277:1630-1635.
Durbin JE, Hackenmiller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443-450.
Frassanito MA, Cusmai A, Iodice G, Dammacco F (2001) Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 97:483-489.
Garcia R, Yu CL, Hudnall A, Catlett R, Nelson KL, Smithgall T, Fujita DJ, Ethier SP, Jove R (1997) Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ 8:1267-1276.
Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R (2001) Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20:2499-2513.
Gouilleux-Gruart V, Gouilleux F, Desaint C, Claisse JF, Capiod JC, Delobel J, Weber-Nordt R, Dusanter-Fourt I, Dreyfus F, Groner B, Prin L (1996) STAT-related transcription factors are constitutively activated in peripheral blood cells from acute leukemia patients. Blood 87:1692-1697.
Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS, Tweardy DJ (1998) Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro. J Clin Invest 102:1385-1392.
Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265:621-636.
Hirano T (1991) Interleukin 6 (IL-6) and its receptor: their role in plasma cell neoplasias. Int J Cell Cloning 9:166-184.
Hirano T (1998) Interleukin 6 and its receptor: ten years later. Int Rev Immunol 16:249-284.
Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19:2548-2556.
Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A, et al. (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73-76.
Horvath CM (2000) STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 25:496-502.
Horvath CM, Wen Z, Darnell JE, Jr. (1995) A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 9:984-994.
Hung W, Elliott B (2001) Co-operative effect of c-Src tyrosine kinase and Stat3 in activation of hepatocyte growth factor expression in mammary carcinoma cells. J Biol Chem 276:12395-12403.
Hwa V, Little B, Kofoed EM, Rosenfeld RG (2004) Transcriptional regulation of insulin-like growth factor-I by interferon-gamma requires STAT-5b. J Biol Chem 279:2728-2736.
Ihle JN, Kerr IM (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11:69-74.
Kamimura D, Ishihara K, Hirano T (2003) IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol 149:1-38.
Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95:7556-7561.
Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, et al. (1988) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332:83-85.
Kelly SA, Gschmeissner S, East N, Balkwill FR (1991) Enhancement of metastatic potential by gamma-interferon. Cancer Res 51:4020-4027.
Kerr IM, Costa-Pereira AP, Lillemeier BF, Strobl B (2003) Of JAKs, STATs, blind watchmakers, jeeps and trains. FEBS Lett 546:1-5.
Klein B, Zhang XG, Lu ZY, Bataille R (1995) Interleukin-6 in human multiple myeloma. Blood 85:863-872.
Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR (1997) Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278:1630-1632.
Le Poole IC, Riker AI, Quevedo ME, Stennett LS, Wang E, Marincola FM, Kast WM, Robinson JK, Nickoloff BJ (2002) Interferon-gamma reduces melanosomal antigen expression and recognition of melanoma cells by cytotoxic T cells. Am J Pathol 160:521-528.
Lee CK, Raz R, Gimeno R, Gertner R, Wistinghausen B, Takeshita K, DePinho RA, Levy DE (2002) STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17:63-72.
Levy DE, Darnell JE, Jr. (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651-662.
Lord JD, McIntosh BC, Greenberg PD, Nelson BH (2000) The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. J Immunol 164:2533-2541.
Lou W, Ni Z, Dyer K, Tweardy DJ, Gao AC (2000) Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 42:239-242.
Meinke A, Barahmand-Pour F, Wohrl S, Stoiber D, Decker T (1996) Activation of different Stat5 isoforms contributes to cell-type-restricted signaling in response to interferons. Mol Cell Biol 16:6937-6944.
Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, Carver-Moore K, DuBois RN, Clark R, Aguet M, Schreiber RD (1996) Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84:431-442.
Miles SA, Rezai AR, Salazar-Gonzalez JF, Vander Meyden M, Stevens RH, Logan DM, Mitsuyasu RT, Taga T, Hirano T, Kishimoto T, et al. (1990) AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6. Proc Natl Acad Sci U S A 87:4068-4072.
Molnar EL, Hegyesi H, Toth S, Darvas Z, Laszlo V, Szalai C, Falus A (2000) Biosynthesis of interleukin-6, an autocrine growth factor for melanoma, is regulated by melanoma-derived histamine. Semin Cancer Biol 10:25-28.
Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R, Bowman T, Falcone R, Fairclough R, Cantor A, Muro-Cacho C, Livingston S, Karras J, Pow-Sang J, Jove R (2002) Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 62:6659-6666.
Nelson KL, Rogers JA, Bowman TL, Jove R, Smithgall TE (1998) Activation of STAT3 by the c-Fes protein-tyrosine kinase. J Biol Chem 273:7072-7077.
Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A, Chang A, Kraker A, Jove R, Yu H (2002) Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21:7001-7010.
Park OK, Schaefer TS, Nathans D (1996) In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc Natl Acad Sci U S A 93:13704-13708.
Rane SG, Reddy EP (2002) JAKs, STATs and Src kinases in hematopoiesis. Oncogene 21:3334-3358.
Reddy EP, Korapati A, Chaturvedi P, Rane S (2000) IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19:2532-2547.
Sano S, Takahama Y, Sugawara T, Kosaka H, Itami S, Yoshikawa K, Miyazaki J, van Ewijk W, Takeda J (2001) Stat3 in thymic epithelial cells is essential for postnatal maintenance of thymic architecture and thymocyte survival. Immunity 15:261-273.
Schindler C, Darnell JE, Jr. (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64:621-651.
Schindler CW (2002) Series introduction. JAK-STAT signaling in human disease. J Clin Invest 109:1133-1137.
Seidel HM, Milocco LH, Lamb P, Darnell JE, Jr., Stein RB, Rosen J (1995) Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc Natl Acad Sci U S A 92:3041-3045.
Smith PC, Hobisch A, Lin DL, Culig Z, Keller ET (2001) Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev 12:33-40.
Song JI, Grandis JR (2000) STAT signaling in head and neck cancer. Oncogene 19:2489-2495.
Song L, Turkson J, Karras JG, Jove R, Haura EB (2003) Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene 22:4150-4165.
Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227-264.
Takeda K, Kaisho T, Yoshida N, Takeda J, Kishimoto T, Akira S (1998) Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J Immunol 161:4652-4660.
Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I, Akira S (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39-49.
Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 94:3801-3804.
Taniguchi K, Petersson M, Hoglund P, Kiessling R, Klein G, Karre K (1987) Interferon gamma induces lung colonization by intravenously inoculated B16 melanoma cells in parallel with enhanced expression of class I major histocompatibility complex antigens. Proc Natl Acad Sci U S A 84:3405-3409.
Teranishi T, Hirano T, Arima N, Onoue K (1982) Human helper T cell factor(s) (ThF). II. Induction of IgG production in B lymphoblastoid cell lines and identification of T cell-replacing factor- (TRF) like factor(s). J Immunol 128:1903-1908.
Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R (1998) Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 18:2545-2552.
Ueda T, Bruchovsky N, Sadar MD (2002) Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem 277:7076-7085.
Vignais ML, Gilman M (1999) Distinct mechanisms of activation of Stat1 and Stat3 by platelet-derived growth factor receptor in a cell-free system. Mol Cell Biol 19:3727-3735.
Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48-54.
Weber-Nordt RM, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R, Finke J (1996) Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 88:809-816.
Wegenka UM, Buschmann J, Lutticken C, Heinrich PC, Horn F (1993) Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol 13:276-288.
Wegenka UM, Lutticken C, Buschmann J, Yuan J, Lottspeich F, Muller-Esterl W, Schindler C, Roeb E, Heinrich PC, Horn F (1994) The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family. Mol Cell Biol 14:3186-3196.
Woldman I, Varinou L, Ramsauer K, Rapp B, Decker T (2001) The Stat1 binding motif of the interferon-gamma receptor is sufficient to mediate Stat5 activation and its repression by SOCS3. J Biol Chem 276:45722-45728.
Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J, Jove R (1995) Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269:81-83.
Zhang YW, Wang LM, Jove R, Vande Woude GF (2002) Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene 21:217-226.
Zhong Z, Wen Z, Darnell JE, Jr. (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95-98.