簡易檢索 / 詳目顯示

研究生: 余政遠
Yu, Jheng-Yuan
論文名稱: 基於行動邊緣計算與貪婪演算法之群組式地理內容共享
The Geo Contents Sharing using the Greedy-based Clustering Method and the Mobile Edge Computing (MEC) Paradigm
指導教授: 黃崇明
Huang, Chung-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 50
中文關鍵詞: 鄰近式服務鄰近式行動社交網絡行動邊緣計算裝置到裝置通訊內容分享興趣點適地性服務
外文關鍵詞: Proximity Service (ProxSe), Mobile Social Network in Proximity (MSNP), Mobile Edge Computing (MEC), Device-to-Device (D2D) Communication, Content Sharing, Point of Interest (POI), Location-based Service (LBS)
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著行動網路和適地性服務的普及,使用者可以透過其行動裝置基於地理位置搜尋並下載鄰近的數個興趣點內容。而地理位置相鄰的使用者通常會下載到重覆甚至於完全相同的興趣點內容。此各自下載興趣點內容的情況對於4G/5G行動網路以及網際網路造成了極大的負荷以及資源的浪費。為了解決上述問題,這篇論文提出了一種應用於鄰近式服務之分群方法。首先將使用者的行動裝置分成數個群組並在每個群組中選擇一個組頭,由組頭負責透過需收費的4G/5G行動網路下載該群組所需之鄰近興趣點內容,再透過免費的WiFi無線網路以裝置到裝置通訊方式分享下載的興趣點內容給其群組成員。由於使用者會不斷移動,其行動裝置所需下載並暫存的興趣點內容也會依據其地理位置變更而動態更新。因此不同於傳統考慮到行動裝置的連通性以及中心性等特性所設計出的分群方法,這篇論文提出的分群方法還考慮了各個行動裝置(i)被選擇為組頭時所能減少的4G/5G行動網路資料下載量、(ii)透過WiFi無線網路連接的行動裝置數量、以及(iii)當下剩餘的電池電量。除此之外考慮到公平性,也就是避免某個行動裝置一直被選擇為組頭負責下載和分享興趣點內容,這篇論文還提出一個計點機制,被選擇為組頭行動裝置可以賺取點數,其群組成員需支付點數。在系統架構上,這篇論文採用了行動邊緣運算式的網路架構。在每個4G/5G基地台旁部署行動邊緣運算伺服器,由此行動邊緣運算伺服器(i)從雲端伺服器中暫存興趣點內容以及(ii)將連接上其所屬之4G/5G基地台的行動裝置分群。實驗模擬結果顯示這篇論文提出的分群方法相對於傳統分群方法在(i)減少4G/5G行動網路資料下載量以及(ii)平衡系統中各個行動裝置的電池電量消耗方面都有較佳的表現。

    A location-based service (LBS) application normally allows its users to download Point of Interests’ (POIs’) contents nearby using their user equipments (UEs). Thus, users who are proximate with each other usually download similar or even the same POIs’ contents, which causes the resource waste and heavy load in Internet and 4G/5G cellular network if each user has the downloading individually. To tackle the aforementioned problem, this work proposed a clustering method that groups UEs into several clusters and select a cluster head for each cluster to be in charge of downloading POIs’ contents nearby through the charged 4G/5G cellular network and then forwarding the downloaded POIs’ contents to cluster members through the free charged Device-to-Device (D2D) communication, e.g., WiFi wireless network, to achieve the goal of proximate sharing, i.e., the Proximity Service (ProxSe). Since the considered users are moving and each user’s UE needs to download and cache the k-nearest POIs’ contents in the n-kilometer range, i.e., the downloaded and cached POIs’ contents need to be updated dynamically depending on the user’s current location, the corresponding clustering method is different from the traditional clustering methods, which considered centrality, connectivity, etc. To meet the aforementioned characteristics, the proposed clustering method considers (i) the reduced amount of the downloaded data volume of POIs’ contents using 4G/5G cellular network when a specific UE plays the role of the cluster head, (ii) the WiFi connectivity of the UE, and (iii) the remaining battery power of the UE to do clustering. Additionally, to achieve the fairness concern, the proposed clustering method also considers the credit, for which a credit scheme that has the user whose UE plays the role of the cluster head to earn credit and those users whose UEs play the role of the cluster member to pay credit was proposed in this work. This work adopted the Mobile Edge Computing (MEC) paradigm and architecture, in which a MEC server is associated with a 4G/5G BS. The MEC server can (i) cache POIs’ contents from the remote cloud server and (ii) execute the proposed clustering method to group users’ UEs that attached to the corresponding BS. Then, the cluster head of each cluster needs to download POIs’ contents from the MEC server through 4G/5G cellular network and forward the downloaded POIs’ contents to cluster members that belong to the corresponding cluster through WiFi wireless network. The simulation results have shown that the proposed clustering method has the better performance on (i) the reduced amount of the downloaded data volume of POIs’ contents and (ii) the consumed battery power.

    摘要 I Abstract II 誌謝 IV Contents V List of Figures VI List of Tables VII Chapter 1 Introduction 1 Chapter 2 Related Works 9 Chapter 3 Architecture and the Abstract Functional Scenario 12 3-1 Architecture 12 3-2 The Abstract Functional Scenario 13 Chapter 4 The Proposed Method 17 Chapter 5 Performance Evaluation 31 5-1 Environment 31 5-2 Experimental Results 32 Chapter 6 Conclusion and Future Works 48 Bibliography 49

    [1] N. Abbas, Y. Zhang, A. Taherkordi and T. Skeie, “Mobile Edge Computing: A Survey”, IEEE Internet Of Things Journal, Vol. 5, No. 1, pp. 450-465, 2018.
    [2] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang and W. Wang, “A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications”, IEEE Access, Vol. 5, pp. 6757-6779, 2017.
    [3] M. R. Garey and D. S. Johnson, “Computers and Intractability; A Guide to the Theory of NP-Completeness”, New York, NY, USA:Freeman, 1990.
    [4] K. Mohanty, S. Shaw, P. Verma, P. Richa, R. Sah and A. Mukherjee, “Energy Efficient Clustering Protocols: A Study”, Proceedings of the 2nd International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, pp. 1656-1659, 2018.
    [5] M. Ahmad, A. Hameed, A. A. Ikram and I. Wahid, “State-of-the-Art Clustering Schemes in Mobile Ad Hoc Networks: Objectives, Challenges, and Future Directions”, IEEE Access, Vol. 7, pp. 17067-17081, 2019.
    [6] C. Cooper, D. Franklin, M. Ros, F. Safaei and M. Abolhasan, “A Comparative Survey of VANET Clustering Techniques”, IEEE Communications Surveys & Tutorials, Vol. 19, No. 1, pp. 657-681, 2017.
    [7] M. Mehrabi, D. You, V. Latzko, H. Salah, M. Reisslein and F. H. P. Fitzek, “Device-Enhanced MEC: Multi-Access Edge Computing (MEC) Aided by End Device Computation and Caching: A Survey”, IEEE Access, Vol. 7, pp. 166079-166108, 2019.
    [8] K. Zhang, S. Leng, Y. He, S. Maharjan and Y. Zhang, “Cooperative Content Caching in 5G Networks with Mobile Edge Computing”, IEEE Wireless Communications, Vol. 25, No. 3, pp. 80-87, 2018.
    [9] A. Mehrabi, M. Siekkinen, G. Illahi and A. Ylä-Jääski, “D2D-Enabled Collaborative Edge Caching and Processing with Adaptive Mobile Video Streaming”, Proceedings of the 20th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Washington, DC, USA, pp. 1-10, 2019.
    [10] E. Baccour, A. Erbad, A. Mohamed and M. Guizani, “CE-D2D: Dual Framework Chunks Caching and offloading in Collaborative Edge networks with D2D communication”, Proceedings of the 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, pp. 1550-1556, 2019.
    [11] C. Jiang, L. Gao, J. Luo and S. Gong, “Crowdsourcing for Mobile Edge Caching: A Game-Theoretic Analysis”, Proceedings of the 53rd IEEE International Conference on Communications (ICC), Shanghai, China, pp. 1-6, 2019.
    [12] J. He, H. Wang, X. Chu and T. Zhang, “Incentive Mechanism and Content Provider Selection for Device-to-Device-Based Content Sharing”, IEEE Transactions on Vehicular Technology, Vol. 68, No. 3, pp. 2946-2957, 2019.
    [13] L. Yang, D. Wu, S. Xu, G. Zhang and Y. Cai, “Social-Energy-Aware User Clustering for Content Sharing Based on D2D Multicast Communications”, IEEE Access, Vol. 6, pp. 36092-36104, 2018.
    [14] Y. Wu, D. Wu, L. Yang and S. Xu, “Incentive-based cluster formation for D2D multicast content sharing”, Proceedings of the 24th Asia-Pacific Conference on Communications (APCC), Ningbo, China, pp. 125-130, 2018.
    [15] Location API, Android. https://developer.android.com/reference/android/location/Location

    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE