| 研究生: |
莊豐任 Juang, Feng-Renn |
|---|---|
| 論文名稱: |
新穎奈米結構高性能一氧化碳氣體感測器之研製 Studies of Various Novel Nano Structures High Performance Carbon Monoxide Gas Sensors |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 一氧化碳 、氣體感測器 、奈米結構 |
| 外文關鍵詞: | carbon monoxide, gas sensor, nano structure |
| 相關次數: | 點閱:60 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中首先提出利用準分子雷射退火(excimer laser annealing, ELA)在玻璃基板上成長低溫多晶矽薄膜(LTPS),利用此LTPS薄膜及金屬氧化層研製蕭特基二極體式一氧化碳感測器。並分析不同金屬氧化層對蕭特基二極體的一氧化碳感測特性影響。金屬氧化層與電極傳來的電子形成帶負電的氧離子。當一氧化碳氣體與氧離子接觸時就會產生二氧化碳並釋放出電子到低溫多晶矽層,因而降低能障高度及增加感測電流。在不同的氧化層中,二氧化錫(tin oxide, SnO2)具有較寬的能隙 (3.9eV),故進入SnO2的電子不易再回到電極,因此具有較高的反應機率。在100 ppm的一氧化碳氣體濃度下,感測比值(relative sensitivity ratio)可高達546%。吾人藉由平衡常數、反應熱探討操作溫度對一氧化碳感測器的影響。發現高溫條件下的二極體會有較佳感測能力,並由實驗結果證實這種趨勢。
為了提高感測比值,吾人利用水熱法(hydrothermal method)製備各種奈米結構的金屬氧化層 如奈米花(nano flower)、奈米微粒(nano particle)、奈米孔洞(nano pore)及奈米柱(nano rod)以增加其反應表面積/體積比。實驗結果證實具奈米結構感測層之二極體的確具有較佳的感測能力。尤其奈米花結構其感測比值更可高達983%,為平面薄膜結構之1.8倍。高出已發表之電阻式一氧化碳感測器近10倍。
另外,本研究更研發各種整體奈米結構(whole nano structure)的p-i-n二極體式感測器。利用特殊化學溶液,將p型矽(100)基板先蝕刻出矽奈米尖端(nano tip)或奈米柱狀結構,再於其上沉積p-i-n薄膜及完成感測元件。藉著整體的奈米結構得以更進一步提升反應表面積/體積比。再利用鑽石及碳化矽半導體薄膜之高能隙特質,來降低二極體漏電流大小提高感測比值。結果鑽石與碳化矽奈米柱狀元件感測比值分別提高到270%和180%。
於本論文中,吾人更對奈米結構提升蕭特基及p-i-n二極體感測一氧化碳機制做深入的研究。並以能帶模型詳述在空氣與一氧化碳環境下電子傳導機制之異同。
In this dissertation, for the first time, the Au/MO/n-LTPS MOS Schottky diodes on a glass substrate were developed for carbon monoxide (CO) gas sensing applications. The MO is metal oxide including SnO2, ZnO and TiO2, and utilized as the sensing element. To enhance sensing ability by enlarging the surface to volume ratio, the MO was formed in nano structure. Various nano structures such as nano flower, nano particle, nano pore and nano rod were prepared with hydrothermal methods for different MO materials. The effects of the nano structures on the device’s performances were studied and compared. For SnO2, experimental results show the nano structure sensors have a better performance than that without the nano structures, especially for the nano flower structure has a sensitivity of 983%, which is ~1.8 times higher than the thin film one, or ~9.8 times over the reported resistance type sensor.
Besides, the aqueous chemical method was also applied to prepare the high performance p-i-n diode type whole nano structure CO sensors. The diode was formed on the Si substrates, which had preferentially etched to form nano tip or nano rod depending on the etching solution. On the other hand, used high band gap semiconductor such as diamond or SiC material as i layer to suppress the off current in air, and thus promoting the sensitivity. Consequently, the whole nano rod n-SnOx/i-diamond/p-diamond and n-SnOx/i-SiC/p-SiC p-i-n diode on p-silicon substrate can achieve the high sensitivity up to 270% and 180%, respectively.
The enhancements with the nano structures in both type sensors are interpreted in details with models and band diagrams.
[1] J. A. Raub, M. Mathieu-Nolf, N. B. Hampson and S. R. Thom, “Carbon monoxide poisoning - a public health perspective,” Toxicology, vol. 145, no. 1, pp. 1-14, Apr. 2000.
[2] S. H. Hahn, N. Bârsan, U. Weimar, S. G. Ejakov, J. H. Visser and R. E. Soltis, “CO sensing with SnO2 thick film sensors: role of oxygen and water vapour,” Thin Solid Films, vol. 436, no. 1, pp. 17-24, Jul. 2003.
[3] W. Göpel and K. D. Schierbaum, “SnO2 sensors: current status and future prospects,” Sens. Actuator B-Chem., vol. 26-27, no. 1-3, pp. 1-12, May 1995.
[4] K. Dobos and G. Zimmer, “Performance of carbon monoxide sensitive MOSFETs with metal-oxide semiconductor gates,” IEEE Trans. Electron Devices, vol. 32, no. 7, pp. 1165-1169, Jul. 1985.
[5] A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas and G. W. Auner, “Silicon-carbide MOS capacitors with laser-ablated Pt gate as combustible gas sensors,” Sens. Actuator B-Chem., vol. 63, no. 1-2, pp. 91-102, Apr. 2000.
[6] S. Nakagomi, P. Tobias, A. Baranzahi, I. Lundström, P. Mårtensson and A. L. Spetz, “Influence of carbon monoxide, water and oxygen on high temperature catalytic metal-oxide-silicon carbide structures,” Sens. Actuator B-Chem., vol. 45, no. 3, pp. 183-191, Dec. 1997.
[7] A. Köck, A. Tischner, T. Maier, M. Kast, C. Edtmaier, C. Gspan and G. Kothleitner, “Atmospheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4 detection,” Sens. Actuator B-Chem., vol. 138, no. 1, pp. 160-167, Apr. 2009.
[8] C. S. Moon, H. R. Kim, G. Auchterlonie, J. Drennan and J. H. Lee, “Highly sensitive and fast responding CO sensor using SnO2 nanosheets,” Sens. Actuator B-Chem., vol. 131, no. 2, pp. 556-564, May 2008.
[9] S. J. Chang, T. J. Hsueh, I. C. Chen and B. R. Huang, “Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles,” Nanotechnology, vol. 19, no. 17, pp. 175502, Apr. 2008.
[10] A. Fort, M. Mugnaini, S. Rocchi, V. Vignoli, E. Comini, G. Faglia and A. Ponzoni, “Metal-oxide nanowire sensors for CO detection: Characterization and modeling,” Sens. Actuator B-Chem., vol. 148, no. 1, pp. 283-291, Jun. 2010.
[11] H. Huang, C. Y. Ong, J. Guo, T. White, M. S. Tse, and O. K. Tan, “Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors,” Nanoscale, vol. 2, no. 7, pp. 1203-1207, May 2010.
[12] T. J. Hsueh, Y. W. Chen, S. J. Chang, S. F. Wang, C. L. Hsu, Y. R. Lin, T. S. Lin and I. C. Chen, “ZnO nanowire-based CO sensors prepared at various temperatures,” J. Electrochem. Soc., vol. 154, no. 12, pp. J393-J396, Oct. 2007.
[13] N. M. Hwang, J. H. Hahn and D. Y. Yoon, “Charged cluster model in the low pressure synthesis of diamond,” J. Cryst. Growth, vol. 162, no. 1-2, pp. 55-68, Apr. 1996.
[14] G. Binnig, C. F. Quate and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett., vol. 56, no. 9, pp. 930-933, Mar. 1986.
[15] W. J. Bartels, “Characterization of thin layers on perfect crystals with a multipurpose high resolution x-ray diffractometer,” J. Vac. Sci. Technol. B, vol. 1, no. 2, pp. 338-345, Jun. 1983.
[16] T. Anukunprasert, C. Saiwan and E. Traversa, “The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb-TiO2,” Sci. Technol. Adv. Mater., vol. 6, no. 3-4, pp. 359-363, Apr.-May 2005.
[17] C. Y. Liu, C. F. Chen and J. P. Leu, “Fabrication and CO sensing properties of mesostructured ZnO gas sensors,” J. Electrochem. Soc., vol. 156, no. 1, pp. J16-J19, 2009.
[18] T. H. Chou, Y. K. Fang, Y. T. Chiang, K. C. Lin, C. I. Lin, C. H. Kao and H. Y. Lin, “The Pd/TiO2/n-LTPS thin-film Schottky diode on glass substrate for hydrogen sensing applications,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1232-1235, Nov. 2008.
[19] Y. Gurbuz, W. P. Kang, J. L. Davidson and D. V. Kerns, “A new diode-based carbon monoxide gas sensor utilizing Pt-SnOx/diamond,” Sens. Actuator B-Chem., vol. 56, no. 1-2, pp. 151-154, Jun. 1999.
[20] I. H. Song, S. H. Kang, W. J. Nam and M. K. Han, “A high-performance multichannel dual-gate poly-Si TFT fabricated by excimer laser irradiation on a floating a-Si thin film,” IEEE Electron Device Lett., vol. 24, no. 9, pp. 580-582, Sept. 2003.
[21] J. H. Lee, J. H. Kim and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp. 897-899, Dec. 2005.
[22] Y. Wang, X. H. Wu, Y. F. Li and Z.L. Zhou, “Mesostructured SnO2 as sensing material for gas sensors,” Solid-State Electron., vol. 48, no. 5, pp. 627-632, May 2004.
[23] A. Rothschild, F. Edelman, Y. Komem and F. Cosandey, “Sensing behavior of TiO2 thin films exposed to air at low temperatures,” Sens. Actuator B-Chem., vol. 67, no. 3, pp. 282-289, Sept. 2000.
[24] N. Barsan and U. Weimar, “Conduction model of metal oxide gas sensors,” J. Electroceram., vol. 7, no. 3, pp. 143-167, Dec. 2001.
[25] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, no. 9, pp. 1938-1944, Sept. 2001.
[26] G. B. Barbi, J. P. Santos, P. Serrini, P. N. Gibson, M. C. Horrillo and L. Manes, “Ultrafine grain-size tin-oxide films for carbon monoxide monitoring in urban environments,” Sens. Actuator B-Chem., vol. 25, no. 1-3, pp. 559-563, Apr. 1995.
[27] Z. Z. Yuan, D. S. Li, M. H. Wang, P. L. Chen, D. R. Gong, P. H. Cheng and D. R. Yang, “Electroluminescence of SnO2/p-Si heterojunction,” Appl. Phys. Lett., vol. 92, no. 12, pp. 121908, Mar. 2008.
[28] V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys., vol. 83, no. 10, pp. 5447-5451, May 1998.
[29] Y. C. Hong, C. U. Bang, D. H. Shin and H. S. Uhm, “Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma,” Chem. Phys. Lett., vol. 413, no. 4-6, pp. 454-457, Sept. 2005.
[30] M. N. Islam and M. O. Hakim, “Electron affinity and work function of polycrystalline SnO2 thin film,” J. Mater. Sci. Lett., vol. 5, no. 1, pp. 63-65, Jan. 1986.
[31] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, “Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates,” Appl. Phys. Lett., vol. 83, no. 23, pp. 4719-4721, Dec. 2003.
[32] J. W. Yoon, T. Sasaki and N. Koshizaki, “Dispersion of nanosized noble metals in TiO2 matrix and their photoelectrode properties,” Thin Solid Films, vol. 483, no. 1-2, pp. 276-282, Jul. 2005.
[33] S. R. Wang, Y. Q. Zhao, J. Huang, Y. Wang, S. H. Wu, S. M. Zhang and W. P. Huang, “Low-temperature carbon monoxide gas sensors based gold/tin dioxide,” Solid-State Electron., vol. 50, no. 11-12, pp. 1728-1731, Nov.-Dec. 2006.
[34] L. D. Prockop and R. I. Chichkova, “Carbon monoxide intoxication: an updated review,” J. Neurol. Sci., vol. 262, no. 1-2, pp. 122-130, Nov. 2007.
[35] I. Dokme, S. Altindal and I. M. Afandiyeva, “The distribution of the barrier height in Al-TiW-Pd2Si/n-Si Schottky diodes from I-V-T measurements,” Semicond. Sci. Technol., vol. 23, no. 3, pp. 035003, Mar. 2008.
[36] G. Neri, A. Bonavita, S. Galvagno, C. Pace and N. Donato, “Preparation, characterization and CO sensing of Au/iron oxide thin films,” J. Mater. Sci.-Mater. Electron., vol. 13, no. 9, pp. 561-565, Sept. 2002.
[37] R. Dolbec and M. A. El Khakania, “Sub-ppm sensitivity towards carbon monoxide by means of pulsed laser deposited SnO2:Pt based sensors,” Appl. Phys. Lett., vol. 90, no. 17, pp. 173114, Apr. 2007.
[38] A. Salehi, “A highly sensitive self heated SnO2 carbon monoxide sensor,” Sens. Actuator B-Chem., vol. 96, no. 1-2, pp. 88-93, Nov. 2003.A
[39] G. Y. Zhao, W. Sutton, D. Pavlidis, E. L. Piner, J. Schwank and S. Hubbard, “A novel Pt-AlGaN/GaN heterostructure Schottky diode gas sensor on Si,” IEICE Trans. Electron., vol. E86-C, no. 10, pp. 2027-2031, Oct. 2003.
[40] V. I. Filippov, A. A. Vasiliev, W. Moritz and J. Szeponik, “Room-temperature hydrogen sensitivity of a MIS-structure based on the Pt/LaF3 interface,” IEEE Sens. J., vol. 6, no. 5, pp. 1250-1255, Oct. 2006.
[41] M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella and P. Siciliano, “SnO2 thin films for gas sensor prepared by r.f. reactive sputtering,” Sens. Actuator B-Chem., vol. 25, no. 1-3, pp. 465-468, Apr. 1995.
[42] J. Wöllenstein, H. Bottner, M. Jaegle, W.J. Becker and E. Wagner, “Material properties and the influence of metallic catalysts at the surface of highly dense SnO2 films,” Sens. Actuator B-Chem., vol. 70, no. 1-3, pp. 196-202, Nov. 2000.
[43] E. H. Rhodorick and R. H. Williams, Metal Semiconductor Contacts, 2nd ed. New York: Oxford University Press, 1988.
[44] C. O. Areán, G. T. Palomino, A. A. Tsyganenko and E. Garrone, “Quantum Chemical and FTIR Spectroscopic Studies on the Linkage Isomerism of Carbon Monoxide in Alkali-Metal-Exchanged Zeolites: A Review of Current Research,” Int. J. Mol. Sci., vol. 3, no. 7, pp. 764-776, Jul. 2002.
[45] H. Fukuda, K. Kasama and S. Nomura, “Highly sensitive MISFET sensors with porous Pt–SnO2 gate electrode for CO gas sensing applications,” Sens. Actuator B-Chem., vol. 64, no. 1-3, pp. 163-168, Jun. 2000.
[46] Y. T. Chiang, Y. K. Fang, T. H. Chou, C. I. Lin, F. R. Juang and K. C. Lin, “The impact of TiO2 interface layer on a Pd/n-LTPS Schottky diode hydrogen detecting performances,” IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 2013-2018, Aug. 2010.
[47] A. K. Tripathi and N. M. Gupta, “Pretreatment effect on the catalyst activity and on the enthalpy changes during exposure of Pd/SnO2 and Pd metal to CO, O2, and CO+O2,” J. Catal., vol. 153, no. 2, pp. 208-217, May 1995.
[48] Y. Gurbuz, W. P. Kang, J. L. Davidson and D. V. Kerns, “A novel oxygen gas sensor utilizing thin film diamond diode with catalyzed tin oxide electrode,” Sens. Actuator B-Chem., vol. 36, no. 1-3, pp. 303-307, Oct. 1996.
[49] A. Balducci, A. D'Amico, C. Di Natale, M. Marinelli, E. Milani, M. E. Morgada, G. Pucella, G. Rodriguez, A. Tucciarone and G. Verona-Rinati, “High performance CVD-diamond-based thermocouple for gas sensing,” Sens. Actuator B-Chem., vol. 111, pp. 102-105, Nov. 2005.
[50] Y. Gurbuz, W. P. Kang, J. L. Davidson and D. V. Kerns, “Current conduction mechanism and gas adsorption effects on device parameters of the Pt/SnOx/diamond gas sensor,” IEEE Trans. Electron Devices, vol. 46, no. 5, pp. 914-920, May 1999.
[51] R. K. Joshi, J. E. Weber, Q. Hu, B. Johnson, J. W. Zimmer and A. Kumar “Carbon monoxide sensing at room temperature via electron donation in boron doped diamond films,” Sens. Actuator B-Chem., vol. 154, no. 1, pp. 527-532, Mar. 2010.
[52] H. Matsumura, “Summary of research in NEDO Cat-CVD project in Japan,” Thin Solid Films, vol. 395, no. 1-2, pp. 1-11, Sept. 2001.
[53] A. H. Mahan, “Status of Cat-CVD (Hot Wire CVD) research in the United States,” Thin Solid Films, vol. 395, no. 1-2, pp. 12-16, Sept. 2001.
[54] R. E. I. Schropp, “Status of Cat-CVD (Hot-Wire CVD) research in Europe,” Thin Solid Films, vol. 395, no. 1-2, pp. 17-24, Sept. 2001.
[55] J. Y. Kim, D. Y. Kim and N. M. Hwang, “Spontaneous generation of negatively charged clusters and their deposition as crystalline films during hot-wire silicon chemical vapor deposition,” Pure Appl. Chem., vol. 78, no. 9, pp. 1715-1722, Sept. 2006.
[56] F. R. Juang, Y. K. Fang, Y. T. Chiang, T. H. Chou, C. I. Lin and C. W. Lin, “The Low Temperature Polysilicon (LTPS) Thin Film MOS Schottky Diode on Glass Substrate for Low Cost and High Performance CO Sensing Applications,” Sens. Actuator B-Chem., vol. 156, no. 1, pp. 338-342, Aug. 2011.
[57] H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon and D. Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 10, pp. 1773-1778, Oct. 2009.
[58] D. R. McKenzie, D. Muller and B. A. Pailthorpe, “Compressive-Stress-Induced Formation of Thin-Film Tetrahedral Amorphous-Carbon,” Phys. Rev. Lett., vol. 67, no. 6, pp. 773-776, Aug. 1991.
[59] R. E. Shroder, R. J. Nemanich and J. T. Glass, “Analysis of the composite structures in diamond thin films by Raman spectroscopy,” Phys. Rev. B, vol. 41, no. 6, pp. 3738-3745, Feb. 1990.
[60] Database, International Centre for Diffraction Data (ICDD), Newton Square, PA, 2002.
[61] S. Klein, L. Houben, R. Carius, F. Finger and W. Fischer, “Structural properties of microcrystalline SiC deposited at low substrate temperatures by HWCVD,” J. Non-Cryst. Solids, vol. 352, no. 9-20, pp. 1376-1379, Jun. 2006.
[62] Y. Komura, A. Tabata, T. Narita, M. Kanaya, A. Kondo and T. Mizutani, “Film properties of nanocrystalline 3C-SiC thin films deposited on glass substrates by hot-wire chemical vapor deposition using CH4 as a carbon source,” Jpn. J. Appl. Phys., vol. 46, no. 1, pp. 45-50, Jan. 2007.
[63] H. Yamaura, T. Jinkawa, J. Tamaki, K. Moriya, N. Miura and N. Yamazoe, “Indium oxide-based gas sensor for selective detection of CO,” Sens. Actuator B-Chem., vol. 36, no. 1-3, pp. 325-332, Oct. 1996.
[64] R. Klingvall, I. Lundstrom and M. Eriksson, “Sub ppm detection of hydrogen,” IEEE Sens. J., vol. 8, no. 3-4, pp. 301-307, Mar.-Apr. 2008.
[65] NIOSH Publications and Products (1994, May) Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs) [Online]. Available: http://www.cdc.gov/niosh/idlh/630080.html
[66] W. Lee, K. Hong, Y. Park, N. H. Kim, Y. Choi and J. Park, “Surface and sensing properties of PE-ALD SnO2 thin film,” Electron. Lett., vol. 41, no. 8, pp. 475-477, Apr. 2005.
[67] S. M. A. Durrani, “The influence of electrode metals and its configuration on the response of tin oxide thin film CO sensor,” Talanta, vol. 68, no. 5, pp. 1732-1735, Feb. 2006.
[68] G. Micocci, A. Serra, P. Siciliano, A. Tepore and Z. AliAdib, “CO sensing characteristics of reactively sputtered SnO2 thin films prepared under different oxygen partial pressure values,” Vacuum, vol. 47, no. 10, pp. 1175-1177, Oct. 1996.
[69] I. Sayago, J. Gutiérrez, L. Arés, J. I. Robla, M. C. Horrillo, J. Getino, J. Rino and J. A. Agapito, “The effect of additives in tin oxide on the sensitivity and selectivity to NOx and CO,” Sens. Actuator B-Chem., vol. 26, no. 1-3, pp. 19-23, May 1995.
[70] D. D. Li, J. Hu, R. Q. Wu and J. G. Lu, “Conductometric chemical sensor based on individual CuO nanowires,” Nanotechnology, vol. 21, no. 48, pp. 485502, Dec. 2010.
[71] S. Marco, A. Ortega, A. Pardo and J. Samitier, “Gas identification with tin oxide sensor array and self-organizing maps: Adaptive correction of sensor drifts,” IEEE Trans. Instrum. Meas., vol. 47, no. 1, pp. 316-321, Feb. 1998.
[72] W. H. Tao and C. H. Tsai, “H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining,” Sens. Actuator B-Chem., vol. 81, no. 2-3, pp. 237-247, Jan. 2002.
[73] FIS Inc. (2006, Mar.) Environmental Monitoring Data Sheet [Online]. Available: http://www.fisinc.co.jp/en/common/pdf/ESB50012.pdf
[74] United Nations Framework Convention on Climate Change (1997, Dec.) Kyoto Protocol [Online]. Available: http://unfccc.int/resource/docs/convkp/kpeng.pdf
校內:2016-12-28公開