| 研究生: |
何江琛 Ho, Chiang-Chen |
|---|---|
| 論文名稱: |
高頻心臟超音波影像下利用心肌組織形變量來評估斑馬魚心臟再生機能 Evaluation of Myocardial Function in Adult Zebrafish using Strain Imaging during Heart Regeneration by High Frequency Echocardiography |
| 指導教授: |
黃執中
Huang, Chih-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 高頻超音波 、心臟超音波 、斑馬魚 、組織再生 |
| 外文關鍵詞: | Ultrasound, Zebrafish, Echocardiography |
| 相關次數: | 點閱:122 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
心臟超音波(Echocardiography)影像一直是臨床醫學診斷上重要判斷依據之一,許多的心臟疾病診斷都是透過心臟超音波的影像以及組織都卜勒影像進行心臟功能評估與心臟疾病檢測。
然而,在許多生物及醫療技術的研究項目中,其所使用的小動物實驗模型卻尚未開發出適用的心臟超音波影像系統,斑馬魚正是其中之一,斑馬魚因擁有心臟再生的功能逐漸成為各研究領域廣泛運用的小生物實驗模組,其心室在切除心肌組織後乃能自我修復生長出新的心肌細胞之獨特能力,且斑馬魚心臟之生理結構與人類心臟極為相似,因此也被視為研究人類心臟再生潛在可能性的重要研究項目之一,而本研究之目的及是發展一套小動物心臟超音波顯微影像系統,利用高頻超音波可達數十微米的極高解析度以及對於其心臟大小限制之軟組織特性的辨識能力極佳且能以非侵入式的方法進行高解析觀察等優勢,並結合心臟超音波都卜勒血流流速量測等成像技術並可對其心臟功能進行評估等重要技術,完成一套可應用於小動物心臟影像觀察及心臟功能評估之小動物超音波顯微影像系統,而在本實驗中,我們也利用此系統對斑馬魚的心臟再生機制進行追蹤觀察,於斑馬魚心臟再生週期進行心臟功能之評估,其中包括組織速度、心肌形變量、心輸出量以及心電圖等追蹤量測。
The adult zebrafish (Danio rerio) has recently become an important small-animal model for studying human pathologies in many fields of preclinical research and translational medicine, particularly those related to cardiovascular diseases. The human heart cannot regenerate after injury, whereas the adult zebrafish can fully regenerate its heart even after 20% of the ventricle is amputated. Many studies have begun to reveal the cellular and molecular mechanisms underlying this regenerative process, which have exciting implications for human cardiac diseases. However, methods to sensitively and noninvasively assess cardiac morphology and performance in adult zebrafish are still limited, and the dynamic functions of the zebrafish heart during regeneration are not yet understood.
This study established a high-resolution echocardiography for strain and strain rate imaging of the zebrafish heart during different regeneration phases. .The core of this imaging system is a 65-MHz single-element high-frequency ultrasonic transducer. With this system, tissue velocity from ventricular myocardium can be measured at different regeneration phases relative to the day of amputation. Cardiac output and deformation imaging of adult zebrafish heart can be also acquired in order to explore the cardiac functions.
REFERENCES
[1] A. U. Graciela "Electric fish: new insights into conserved processes of adult tissue regeneration," Journal of Experimental Biology, pp. 2478-2486, 2013.
[2] K. D. Poss , L. G. Wilson, M. T. Keating, " Heart regeneration in zebrafish," Science, vol. 5, pp. 2188–2190, 2002.
[3] R. J. Major, K. D. Poss, " Zebrafish heart regeneration as a model for cardiac tissue repair," Drug Discov Today Dis Models, vol. 44, pp. 219–225, 2007.
[4] S. Scholz, "The zebrafish has become an attractive model organism in many areas of research ranging from basic developmental biology to applied toxicology," Reproductive Toxicology, vol. 33, pp. 127-130, 2012.
[5] D. Richard Patten, R. Monica, Hall-Porter, "Small Animal Models of Heart Failure Development of Novel Therapies, Past and Present," Circulation: Heart Failure., vol. 2, pp. 138-144, 2009.
[6] R. White, A. Sessa, C. Burke,, "Transparent adult zebrafish as a tool for in vivo transplantation analysis," Cell Stem Cell, vol. 2, pp. 183–189, 2008.
[7] S. Kabli , A. Alia, H. P. Spaink, F. J. Verbeek, "Magnetic resonance microscopy of the adult zebrafish," Zebrafish, vol. 3, pp. 431–439, 2006.
[8] J. B. Kostis, E. Mavrogeorgis, A. Slater, S. Slater, " Use of a range-gated, pulsed ultrasonic doppler technique for continuous measurement of velocity of the posterior heart wall," Ultrasonics, Chest, vol. 62, pp. 597–604., 1972.
[9] K. Isaaz, "Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall," American Journal of Cardiology, vol. 64, pp. 66-75, 1989.
[10] W. N. McDicken, G. R. Sutherland, C. M. Moran, L. N. Gordon, "Colour Doppler velocity imaging of the myocardium.," International Congress Series, vol. 18, pp. 651-654, 1992.
[11] K. Miyatake, M. Yamagishi, N. Tanaka, M. Uematsu, Y. Mine, A. Sano, M. Hirama, "New method for evaluating left ventricular wall motion by color-coded tissue Doppler imaging: in vitro and in vivo studies," American Journal of Cardiology, vol. 25, pp. 717-724, 1995.
[12] G. Mundigler, M. Zehetgruber, "Tissue Doppler Imaging: Myocardial Velocities and Strain - Are there Clinical Applications?," Journal of Clinical and Basic Cardiology, vol. 5, pp. 125-132, 2002.
[13] S. Urheim, T. Edvardsen, H. Torp, et al, "Myocardial Strain by Doppler Echocardiography Validation of a New Method to Quantify Regional Myocardial Function," Circulation, vol. 102, pp. 1158-1164, 2000.
[14] G. Derumeaux, et al, "Tissue Doppler imaging differentiates physiological from pathological pressure-overload left ventricular hypertrophy in rats," Circulation, vol. 105, pp. 1602-1608, 2002.
[15] W. Zhu, et al, "A mouse model for juvenile doxorubicin-induced cardiac dysfunction.," Pediatric Research, vol. 65, pp. 488-494, 2008.
[16] N. Hu, H. J. Yost , E. B. Clark, "Cardiac morphology and blood pressure in the adult zebrafish," The Anatomical Record, vol. 264, pp. 1-12 2001.
[17] L. Sun, C. L. Lien, X. Xu, K.K. Shung, "In vivo cardiac imaging of adult zebrafish using high frequency ultrasound (45-75 MHz)," Ultrasound in medicine & biology, vol. 34, pp. 31-9, 2008.
[18] T. Y. Liu., P. Y. Lee, C. C. Huang, L. Sun, K.K. Shung, "A Study of the Adult Zebrafish Ventricular Function by Retrospective Doppler-Gated Ultrahigh-Frame-Rate Echocardiography," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 60, pp. 1827-1837, 2013.
[19] K. K. Shung, "Diagnostic Ultrasound: Imaging and Blood Flow Measurements," Phase-inversion tissue harmonic imaging compared with conventional B-mode ultrasound in the evaluation of pancreatic lesions, pp. 148-149, 2006.
[20] D. H. Evans, Doppler ultrasound: Physics, instrumentation, and clinical applications: John Wiley & Sons, 1989.
[21] K. Teshima, et al, "Assessment of left ventricular function using pulsed tissue Doppler imaging in healthy dogs and dogs with spontaneous mitral regurgitation," The Journal of Veterinary Medical Science, vol. 67, pp. 1207-15, 2005.
[22] D. Michael, L. Hans, "Strain and Strain Rate Imaging by Echocardiography – Basic Concepts and Clinical Applicability," Current Cardiology Reviews, vol. 5, pp. 133-148, 2009.
[23] F. N. Sherif, P. A. Christopher, et al, "Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography," European Journal of Echocardiography, vol. 10, pp. 165-193, 2009.
[24] T. Loupas, R. B. Peterson, R. W. Gill, " Experimental evaluation of velocity and power estimation for ultrasound blood flow imaging, by means of a two-dimensional autocorrelation approach," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 42, pp. 689–699, 1995.
[25] N. Hu, D. Sedmera, H. J. Yost , E. B. Clark, "Structure and function of the developing zebrafish heart," The Anatomical Record, vol. 260, pp. 148-57, 2000.
[26] Stages of Anesthesia, http://www.miobuffer.com.tw/fnm/198911/24.htm, June 2014.
[27] S. Ahnve, "QT interval prolongation in acute myocardial infarction," European Heart JournalI, pp. 85-95, 1985.
[28] K. H. Haugaa, M. K. Smedsrud, et al, "Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia," JACC Cardiovasc Imaging., vol. 3, pp. 247-56, 2009.
[29] T. Vartdal, H. Brunvand, et al, "Early prediction of infarct size by strain Doppler echocardiography after coronary reperfusion," Journal of the American College of Cardiology, vol. 49, pp. 1715-21, 2007.
校內:2022-07-01公開