| 研究生: |
謝瑋倫 Hsieh, Wei-Lun |
|---|---|
| 論文名稱: |
四旋翼飛行的多項式軌跡規劃與控制 Polynomial Trajectory Planning and Control for Quadrotor Flight |
| 指導教授: |
譚俊豪
Tarn, Jiun-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 路徑規劃 、大角度姿態控制器 、線性小角度姿態控制器 |
| 外文關鍵詞: | Path Planning, Large Angle Attitude Controller, Linear Small Angle Attitude Controller |
| 相關次數: | 點閱:111 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無人駕駛飛行載具(Unmanned Aerial Vehicle)從以前用來遠距離遙控的穩定飛行演變到現在可以透過軌跡規劃而自主飛行抵達導航點的飛行載具,本論文所使用的無人飛行載具為四旋翼,其優點在於靈活性高、自主性強。而本論文的最終目的是要讓四旋翼能完成看起來聰明且有目標性的動作以及達成四旋翼自主飛行並完成規劃好的軌跡做追蹤動作,因此整個過程中可分做三大部分,分別是:(一)建立四旋翼的動力模型; (二)透過序列控制達成軌跡規劃以及(三)透過最佳化方式達成軌跡規劃。建立四旋翼的動力模型是為了能在matlab模擬的環境下模擬四旋翼經由控制器給輸入之後自主飛行的結果,避免在實際飛行時造成四旋翼實體的損壞,能減少修復機具時間。控制器方面則是依Backstepping control 方式依序設計四旋翼線性小角度姿態控制器及線性位置控制器,另外則是透過Nonlinear Dynamic Inversion方式設計大角度姿態控制器。第二部分則將上述控制器做序列串接方式的轉換,達成路徑規劃。最後則是將路徑規劃的問題轉換成標準最佳化問題型式,透過二次規劃的方法,達到具有最小snap特性的路徑規劃。而本論文的貢獻是將Mellinger論文[1]第五、六章理論轉換成matlab code並透過模擬與動畫方式驗證是否達成理論結果。
Unmanned aerial vehicle (UAV) is a stable, long-ranged remotely-controlled, autonomous aerial vehicles before. Now, unmanned aerial vehicle can arrive waypoints precisely through path planning method. In this thesis, the unmanned aerial vehicles used is a quadrotor which has the advantages of high flexibility and strong autonomy. The goal is to complete intelligent or purposeful maneuvers and achieve autonomous flight with precise trajectory tracking. Therefore, the thesis is divided into three parts: first, a dynamic model of the quadrotor. second, path planning via sequencing. third, path planning via optimization method: quadratic programming. And the first part is to find out the dynamic model parameters to simulate the actual vehicle flights in matlab. Controllers used in second and third part are cascaded linear small angle attitude and linear position controller by Backstepping method. Another is large angle attitude controller by Nonlinear Dynamic Inversion method. In order to improve the unmanned aerial vehicle path following performances, feed-forward control is also designed to make quadrotor tracking well.
[1] Mellinger, D., Trajectory Generation and Control for Quadrotors, Mechanical Engineering and Applied Mechanics, Pennsylvania, 2012.
[2] C. Richter, A. Bry, and N. Roy, "Polynomial Trajectory Planning for Quadrotor Flight," in International Conference on Robotics and Automation, 2013.
[3] R. Cory and R. Tedrake. Experiments in fixed-wing uav perching. In AIAA Guidance,Navigation, and Control Conference, 2008.
[4] A. L. Desbiens and M. R. Cutkosky. Landing and perching on vertical surfaces with microspines for small unmanned air vehicles. J. Intell. Robotic Syst., 57:313–327,January 2010.
[5] S. Bayraktar and E. Feron. Experiments with small helicopter automated landings at unusual attitudes. arXiv, 2007.
[6] P. Abbeel. Apprenticeship Learning and Reinforcement Learning with Application to Robotic Control. PhD thesis, Stanford University, Stanford, CA, August 2008.
[7] J. H. Gillula, H. Huang, M. P. Vitus, and C. J. Tomlin. Design of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics in theory and practice. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 1649–1654, Anchorage, AK, May 2010.
[8] S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea. A simple learning strategy for high-speed quadrocopter multi-flips. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 1642–1648, Anchorage, AK, May 2010.
[9] J. H. Gillula, H. Huang, M. P. Vitus, and C. J. Tomlin. Design and analysis of hybrid systems, with applications to robotic aerial vehicles. In Proc. of the Int. Symposium of Robotics Research, Luzern, Switzerland, September 2009.
[10] P. Abbeel. Apprenticeship Learning and Reinforcement Learning with Application to Robotic Control. PhD thesis, Stanford University, Stanford, CA, August 2008.
[11] Maxim Likhachev, Geoff Gordon, and Sebastian Thrun. ARA*: Anytime A* with provable bounds on sub-optimality. Advances in Neural Information Processing Systems,16, 2003.
[12] H.J. Kim, D.H. Shim, and S. Sastry. Nonlinear model predictive tracking control for rotorcraft-based unmanned aerial vehicles. volume 5, pages 3576 – 3581, 2002.
[13] Jie Yu, Ali Jadbabaie, James Primbs, and Yun Huang. Comparison of nonlinear control design techniques on a model of the caltech ducted fan. In IFAC World Congress, IFAC-2c-112, pages 53–58, 1999.
[14] A. Jadbabaie and J. Hauser. On the stability of receding horizon control with a general terminal cost. Automatic Control, IEEE Transactions on, 50(5):674 – 678,may. 2005.
[15] I. D. Landau, R. Lozano, and M. M’Saad. Adaptive Control. Springer, first edition,1998.
[16] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for quadrotors. In Proc. of the IEEE Int. Conf. on Robotics and Automation, May 2011.
[17] Adam Bry. Control, estimation, and planning algorithms for aggressive flight using onboard sensing. Master’s thesis,Massachusetts Institute of Technology, Cambridge,MA, 2012.
[18] Khalil, H., Nonlinear Systems, Prentice Hall, 1996.
[19] Hoffmann, G., S. Waslander, and C. Tomlin, “Quadrotor helicopter trajectory tracking control”, In AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, 2008.
[20] Lee, T., M. Leok, and N. McClamroch, Geometric tracking control of a quadrotor uav on SE(3), Decision and Control, 2010.
[21] R. Alur, C.C., et al., “The algorithmic analysis of hybrid systems”, Theoretical Computer Science, 138(1): pp. 3-34, 1995.
[22] Arimoto, S., S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning”, Journal of Robotic Systems, 1(2): pp. 123-140, 1984.
[23] D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and control for precise aggressive maneuvers. In Int. Symposium on Experimental Robotics, December 2010.
[24] Mary, C., Modelling and Control of Autonomous Quad-Rotor, Electronic Systems, Aalborg, 2010.