簡易檢索 / 詳目顯示

研究生: 周立偉
Chou, Li-Wei
論文名稱: 建構展時與群組跳頻技術於被動式光纖到府網路以強化通訊私密性
The Time-Spreading and Wavelength-Group-Hopping for increasing confidentiality over FTTH networks
指導教授: 黃振發
Huang, Jen-Fa
張耀堂
Chang, Yao-Tang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 69
中文關鍵詞: 私密度暴力猜測法光纖到府陣列波導光柵指配序碼
外文關鍵詞: fiber-to-the-home (FTTH), arrayed-waveguide gratings (AWGs), brute-force attacking strategy, signature address codeword, degree of confidentiality (DOC)
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陣列波導光柵(AWG)所建構的編解、碼器已被廣泛運用於被動式光纖到府(FTTH)網路。本論文首先提出展時與群組跳頻並內嵌入最大長度序列碼(Time-spreading/wavelength-group-hopping embedded M-sequence code)以增加使用者個數(Cardinality)與信號雜訊比等系統效能。更進一步,探討變換指配序碼(Signature Address Codeword)的機制演算法以強化系統的私密性(Confidentiality)。
    為了增加使用者個數,我們運用陣列波導光柵本身既有的循環(cyclic)及自由頻譜(Free Spectral Range, FSR)區間之特性,可將寬頻光源分割成不同波長群組。其中令每一個群組作為一跳頻細元(hopping chip)。該群組跳頻方式係採用傳統的變異質數碼型(modified prime code pattern),並將該群組內嵌入最大長度序碼型(M-sequence code pattern)以建構出一套新穎的二維光碼。再者,為了簡化陣列波導光柵使用數目暨降低最大長度序碼型上既有波長碰撞(Inherent Wavelength Collision)問題,我們選用高/低密度陣列波導光柵(Fine/Coarse AWG)與延遲線(delay line),結合光交連元件(Optical Cross Connect, OXC)以選用不同的光輸出路徑。因此其使用者序碼指配與變換機制更具靈活性。再者,我們定義私密度的指標(degree of confidentiality, DOC)來進行私密性的定量分析。相較於傳統原始與變異性質數跳頻(prime-hop/modified prime-hop code, PHC/MPHC)二維碼,結果顯示出本架構具有較多的使用者、較佳信號雜訊比與私密性。
    重要的是,為強化系統的私密性,本論文在假設竊聽者使用低成本的能量檢測器對於所欲偵知的使用者進行暴力猜測法(brute-force attacking strategy)攻擊下探討光頻二維碼變換的機制與時機。我們提出結合偵測各分佈於傳輸通道之波長的平衡度(the degree of weighted load balance)指標的機制,與推估的系統預期警告時間(anticipative warning time)以實現光頻碼變換的時機,以確保高速被動式光纖到府上安全的通訊環境。

    The array waveguide grating based (AWG-based) encoder/decoder (codec) had configured over Fiber-to-the-Home (FTTH) network. In order to enhance the user cardinality as well as the confidentiality and signal-to-noise ratio (SNR) of system, the time-spreading/wavelength-group-hopping embedded M-sequence code (i.e., called TS/WGH embedded M-sequence) is constructed. Moreover, the changing signature address codeword algorithm is also performed to thwart network attacks by eavesdroppers.
    First, in order to increase the user’s cardinality, we exploited the inherent cyclic and periodic free-spectral-range (FSR) properties of AWG routers, and the total number of available wavelengths is partitioned into the different FSR-hopping chip that is constructed as the modified prime code pattern and embedded M-sequence code pattern.
    Secondly, in order to decrease the number of AWG routers and improve the inherent wavelength collision resulting from M-sequence code pattern, we employ fine/coarse AWG routers, optical delay line and integrate with optical cross connect (OXC) to route variable lightpaths. Hence, the assignment of signature address codeword and changing codeword mechanism is more flexibility and easy to implement.
    Also, the quantitative analyses of network confidentiality are performed by assessing the attained degree of confidentiality (DOC). Compared to conventional prime-hop code (PHC) and modified prime-hop code (MPHC), the result reveals that the multiple-access interference (MAI) and bit error rate (BER) of proposed scheme is decreased and the confidentiality is increased.
    Importantly, in order to enhance the confidentiality, it is assumed that the eavesdropper employs a simple low-cost energy detector to sense the presence of energy in a particular bit interval and then applies a brute-force searching algorithm to attack the targeted user. In proposed scheme, the timing of changing codeword algorithm is investigated and evaluated based on the integrations of the anticipative-warning-time policy and the degree of weighted load balance in each channel.

    Chapter 1. Introduction ................................................................. 1 1.1 The Development of EPON Technology over FTTH..........................2 1.2 The Possible Multiplexing of EPON Technology ................................3 1.2.1 Time Division Multiplexing over EPON....................................................... 4 1.2.2 Wavelength Division Multiplexing over EPON........................................... 5 1.2.3 Code Division Multiplexing over EPON ...................................................... 7 1.3 Confidentiality of OCDMA...................................................................9 1.3.1 Increase the code complexity......................................................................... 9 1.3.2 Decrease the eavesdropper’s signal-to-noise ratio .................................... 10 1.3.3. Change codewords frequently.................................................................... 10 1.4 The Motive of Our Research...............................................................10 1.5 Thesis Preview ...................................................................................... 11 Chapter 2. Overviews on Optical CDMA Techniques............... 13 2.1 One-Dimensional Code Families ........................................................13 2.1.1 Modified Prime Codes ................................................................................. 14 2.1.2 Maximal-Length Sequence Codes............................................................... 16 2.2 Optical Components In OCDMA System..........................................18 2.2.1 Arrayed-Waveguide-Grating....................................................................... 18 2.2.2 Optical Cross-Connects (OXCs) ................................................................. 21 2.3 AWG-based Reconfigurable SAC-OCDMA Scheme over EPON...24 2.3.1 Encoder Mechanism..................................................................................... 25 2.3.2 Decoder Mechanism..................................................................................... 26 Chapter 3. Time-Spreading and Wavelength-Group-Hopping Embedded M-sequence OCDMA System................................... 27 3.1 The Design of TS/WGH Embedded M-sequence Code....................28 3.2 Implementation of Proposed Codes by AWG Router.......................35 3.2.1 The Transmitter and Receiver Configuration ........................................... 36 Chapter 4. System Performance Evaluation.............................. 42 4.1 Multiple Access Interference (MAI) Evaluation...............................42 4.2 Bit Error Rate (BER) Evaluation.......................................................43 4.2.1 By randomly select codewords scheme....................................................... 44 4.2.2 By select codewords group-by-group scheme............................................ 46 Chapter 5. Confidentiality Performance of Proposed System.. 52 5.1 Evaluation of anticipative-warning-time for Anti-Attacking ..........52 5.2 Degree of confidentiality of proposed system....................................57 5.3 Evaluation of brute-force searching time..........................................58 Chapter 6. Conclusion.................................................................. 63 References ..................................................................................... 64

    [1] G. Kramer and G. Pesavento, “Ethernet Passive Optical Network (EPON): Building a next-generation optical access network”, IEEE Communications Magazine, 40(2), pp. 66-73, Feb. 2002.
    [2] M. Ma, Y. Zhu and T. H. Cheng, “A Systematic Scheme for Multiple Access in Ethernet Passive Optical Access Networks”, IEEE J. Lightwave Technol., vol. 23, pp. 3671-3682, Nov. 2005.
    [3] E. Paul and Jr. Green, “Fiber to the Home: The Next Big Broadband Thing”, IEEE Communications Magazine, 42(9), pp. 100-106, Sep. 2004.
    [4] K.S. Kim, “On the evolution of PON-based FTTH solutions,” Information Sciences, vol. 149/1-2, pp. 21-30, Jan. 2003.
    [5] S. Dixit, “IP over WDM: Building the Next-Generation Optical Internet,” John Wiley and Sons, Inc., New Jersey, page 2003.
    [6] J. Y. Hui, “Pattern Code Modulation and Optical Decoding-A Novel Code-Division Multiplexing Technique for Multifiber Network,” IEEE J. Select. Area Commun., vol. SAC-3, pp. 916–27, Nov. 1985.
    [7] N. Karafolas and D. Uttamchandani, “Optical Fiber code Division Multiple Access Networks: A Review,” Optical Fiber Technology, vol. 2, pp. 149-168, April 1996.
    [8] T. H. Shake, “Security performance of optical CDMA against eavesdropping,” IEEE J. Lightwave Technol., vol. 23, pp. 655-670, Feb. 2005.
    [9] T. H. Shake, “Confidentiality performance of spectral-phase-encoded optical CDMA,” IEEE J. Lightwave Technol., vol. 23, pp. 1652-1663, Apr. 2005.
    [10] Tancevski, I. Andonovic, and J. Budin, “Secure optical network architectures utilizing wavelength hopping/time spreading codes,” IEEE Photon. Technol. Lett., vol. 7, pp. 573–575, May 1995.
    [11] H. W. Hu, H. T. Chen, G. C. Yang, and W. C. Kwong,“Synchronous Walsh-based Bipolar-Bipolar Code for CDMA Passive Optical Networks,” IEEE J. Lightwave Technol., vol.25, pp.1910-1917, Aug. 2007.
    [12] J. F. Huang, Y. T. Chang, C. C. Sue, and D. S. Wang, “Reconfigurable Coded WDM with Arrayed-Waveguide-Gratings to Enhance Confidentiality on Fiber-to-the-Home Networks,” Communications, 2006 Asia-Pacific Conference, Aug. 2006.
    [13] Y. T. Chang, C. C. Sue, and J. F. Huang, “Robust Design for Reconfigurable Coder/Decoders to Protect Against Eavesdropping in Spectral Amplitude Coding Optical CDMA Networks,” IEEE J. Lightwave Technol., vol. 25, pp. 1931-1948, Aug. 2007.
    [14] J. R. Stern, C. E. Hoppitt, D. B. Payne, M. H. Reeve, and K. A. Oakley, “ TPON-A Passive Optical Network for Telephony,” Fourteenth European Conference on Optical Communication (ECOC'88), vol. 1, pp. 203-206, Brighton, UK, Sep. 1988.
    [15] G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Communications Magazine, vol. 40, pp. 66-73, Feb. 2002.
    [16] K. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON—Solution Path to Gigabit-Symmetric FTTH,” IEEE J. Lightwave Technol., vol. 24, pp. 1654-1662, Apr. 2006.
    [17] S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” IEEE J. Lightwave Technol., vol. 22, pp. 2582-2591, Nov. 2004.
    [18] F. T. An, D. Gutierrez, K. S. Kim, J. W. Lee and L. G. Kazovsky, “SUCCESS-HPON: A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON,” IEEE Optical communications, vol. 43, pp. s40-s47, Nov. 2005.
    [19] A. Sierra, and S. V. Kartalopoulos, “Evaluation of Two Prevalent EPON Networks Using Simulation Methods,” International Conference on Internet and Web Applications and Services/Advanced International Conference (AICT-ICIW '06), Feb. 2006.
    [20] J. S. Wu, F. R. Gu and H. W. Tsao, “Jitter Performance Analysis of SOCDMA-Based EPON Using Perfect Difference Codes,” IEEE J. Lightwave Technol., vol. 22, pp. 1309-1319, May 2004.
    [21] A. Stok and E. H. Sargent,” The role of optical CDMA in access networks,” IEEE Communications Magazine, vol. 40, pp. 83-87, Sep. 2002.
    [22] H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” IEEE J. Lightwave Technol., vol. 17, pp. 397–405, Mar. 1999.
    [23] S. Yegnanarayanan, A. S. Bhushan, and B. Jalali, “Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA,” IEEE Photon. Technol. Lett., vol. 12, May. 2000.
    [24] J.A. Salehi, A.M. Weiner, and J.P. Heritage, “Coherent ultrashort pulse code-division multiple access communication systems,” IEEE J. Lightwave Technol., vol. 8, pp. 478–491, Mar. 1990.
    [25] G.R. Cooper and R.W. Nettleton, "A spread spectrum technique for high-capacity mobile communications", IEEE Trans. Vehicular Tech., vol. VT-27, pp 264-275, Nov. 1978.
    [26] P. R. Prucnal, M. A. Santoro, and T. R. Fan, “Spread Spectrum Fiber-Optic Local Area Network Using Optical Processing,” IEEE J. Lightwave Technol., vol. LT-4, pp. 547-554, May 1986.
    [27] Wing. C. Kwong, P. A. Perrier, and P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Transactions on Communications, vol. 39, pp. 1625-1634, Nov. 1991.
    [28] H. M. H. Shalaby, “Synchronous fiber-optic cdma systems with interference estimators,” IEEE J. Lightwave Technol., vol. 17, pp. 2268-2275, Nov. 1999.
    [29] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed-waveguide N×N wavelength multiplexer,” IEEE J. Lightwave Technol., vol. 13, pp. 447-455, Mar. 1995.
    [30] B. Vidal, D. Madrid, J. L. Corral, and J. Marti, “Novel Photonic True-Time-Delay Beamformer Based on the Free-Spectral-Range Periodicity of Arrayed Waveguide Gratings and Fiber Dispersion,” IEEE Photon. Technol., vol. 14, pp. 1614-1616, Nov. 2002.
    [31] T. J. Chan, C. K. Chan, K. Chan, W. Hung, and L. K. Chen, “A Novel WDM Passive Optical Network with Bi-directional Protection”, Proceedings of SPIE, vol.4909, pp. 167-173, 2002.
    [32] C. Bock, J. Prat, and S. D. Walker, “Hybrid WDM/TDM PON Using the AWG FSR and Featuring Centralized Light Generation and Dynamic Bandwidth Allocation”, IEEE J. Lightwave Technol., vol. 23, Dec. 2005.
    [33] P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Communications Magazine, pp. 88–95, Mar. 2002.
    [34] G. I. Papadimitriou, C. Papazoglou, and C. A. S. Pomportsi, “Optical switching: switch fabrics, techniques, and Architectures,” IEEE J. Lightwave Technol., vol. 21, pp. 384–405, Feb. 2003.
    [35] D. Bishop et al., “The Rise of Optical Switching,” Sci. Amer., p. 88, Jan. 2001.
    [36] R. Ramaswami and K. N. Sivarajan, Optical Networks, A Practical Perspective. San Fransisco, CA: Morgan Kaufmann, 1998.
    [37] E. Park, A.J. Mendez, and E.M. Gasmeiere, “Temporal/spatial optical CDMA networks,” IEEE Photon. Technol. Lett., pp. 1160–1162, Apr.1992.
    [38] E. S. Shivaleela, K.N. Sivarajan, and A. Selvarajan, “Design of a new family of two-dimensional codes for fiber-optic CDMA networks,” IEEE J. Lightwave Technol., pp. 501–508, 1998.
    [39] L. Tančevski, I. Andonovic, M. Tur, and J. Budin, “Hybrid wavelength hopping/time spreading code division multiple access systems,” IEEE Proc.-Optoelectron., vol. 143, pp. 161-166, June 1996.
    [40] S. Yegnanarayanan, A. S. Bhushan, and B. Jalali, “Fast wavelengthhopping time-spreading encoding/decoding for optical CDMA,” IEEE Photon. Technol. Lett., vol. 12, pp. 573–576, May 2000.
    [41] K. Yu, J. Shin, and N. Park, “Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines,” IEEE Photon. Technol. Lett., vol. 12, pp. 1278–1280, Sep. 2000.
    [42] H. Heo, S. S. Min, Y. H. Won, Y. Yeon, B. K. Kim, and B. W. Kim, “A New Family of 2-D Wavelength-Time Spreading Code for Optical Code-Division Multiple-Access System With Balanced Detection,” IEEE Photon. Technol., vol. 16, pp. 2189-2191, Sep. 2004.
    [43] J. H. Wen, J. Y. Lin, and C. Y. Liu, “Modified prime-hop codes for optical CDMA systems”, IEEE Proc. Comm., vol. 150, pp. 404-408, Oct. 2003.
    [44] Moore, “Cramming more components onto integrated circuits,” Electronics Magazine 19, Apr. 1965.

    下載圖示 校內:2009-07-25公開
    校外:2009-07-25公開
    QR CODE