| 研究生: |
張夤珈 Chang, Yin-Chia |
|---|---|
| 論文名稱: |
第一原理計算探討鋰離子電池中鋰鎳鈷錳氧正極材料與電解液界面之初期反應 First-principles study on the initial reactions at LiNi1/3Co1/3Mn1/3O2 cathode/electrolyte interface in lithium ion batteries |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | LiNi1/3Co1/3Mn1/3O2 、正極與電解液介面 、鋰離子電池 、密度泛函理論 、第一原理計算 |
| 外文關鍵詞: | Lithium ion batteries, LiNi1/3Co1/3Mn1/3O2, cathode/electrolyte interface, density functional theory, ab initio calculation |
| 相關次數: | 點閱:61 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近年來對能源的需求日漸劇增,除了發展太陽能、風力、潮汐與地熱等可再生能源,電池儲能技術也漸漸受到重視,其中鋰離子電池具備能量密度高、重量輕、高電容量、環境汙染低等優點,成為最具有潛力的電池系統之一。在鋰離子電池中,層狀正極材料有高電壓、高電容量等的優點,因此為目前普遍商業用的材料,隨著時間的演進,由LiMO2 (M = Ni、Co、Mn)之一元層狀材料逐漸發展為二元層狀材料(M = NixCoy、NixMny、MnxCoy),甚至是三元層狀材料(M = NixCoyMnz),其中,三元層狀材料具備較好的熱穩定性、較高的電容量、成本較低等的優點,使其成為相當具競爭力的正極材料。
然而,在充放電的過程中仍舊存在電解液在電極表面分解、氣體的產生、過渡金屬離子溶出等的問題,造成電容量衰退、電池壽命減短以及安全的問題,由於在正極材料與電解液介面的反應可能會嚴重影響電池的電化學表現,但目前並未有完整的研究,因此,相對於實驗方法耗費大量金錢、時間與人力成本,本研究使用第一原理計算(Ab initio calculation)的方法,探討已商業化之LiNi1/3Co1/3Mn1/3O2 (NCM)正極與電解液介面之初期反應。
第一部分為原子級模型的建立與能量計算,首先建構出NCM的塊材模型,結構優化計算後與實驗結果比較,確認結構的正確性,接著以軟體切面建出表面的模型,經過收斂計算後即可計算表面能,並建立此材料的Wulff shape,模擬實際顆粒的形貌,觀察材料在實驗上較傾向露出的晶面,再者,進一步在表面上吸附電解液分子,計算吸附能判斷可能吸附的位置與方式。
第二部分則為電化學性質分析,首先,計算吸附前與吸附後的模型電荷密度差,並分析電荷轉移的現象,再者,針對吸附前後的模型進行態密度分析,並計算分波態密度與局域態密度,分析電解液分子吸附對於材料電子能帶結構的影響,有助於了解電解液分子在材料表面的初期反應。
LiNi1/3Co1/3Mn1/3O2 (NCM) is a promising cathode material with high capacity and high voltage in lithium ion batteries. However, the capacity fading mechanism and long-term cycling behavior remain a significant problem. It has been reported that these problems are related to kinds of irreversible reaction on the electrode/electrolyte interface, such as decomposition of electrolyte and the dissolution of transition metal ions. Unlike anode materials, we have less understanding of the interface between cathode and electrolyte. In this work, ab initio calculations based on density functional theory (DFT) were performed to examine the initial reactions at NCM/electrolyte interface. The atomistic model of NCM was constructed. In addition, the slab models of different facet were also constructed. With these proposed model, the surface energies of each facet were calculated. Then the simulated morphology of NCM which is also called Wulff shape was constructed. Based on the exposed planes on the Wulff shape, the adsorption models were constructed. The adsorption process was investigated according to adsorption energy, charge density difference and density of states. The result gives an insight to understand the initial reaction at NCM/electrolyte interface.
1. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries†. Chemistry of Materials, 2010. 22(3): p. 587-603.
2. Hu, M., X. Pang, and Z. Zhou, Recent progress in high-voltage lithium ion batteries. Journal of Power Sources, 2013. 237: p. 229-242.
3. Bhatt, M.D. and C. O'Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys, 2015. 17(7): p. 4799-844.
4. Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
5. Whittingham, M.S., Lithium batteries and cathode materials. Chemical reviews, 2004. 104(10): p. 4271-4302.
6. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9).
7. Marom, R., et al., A review of advanced and practical lithium battery materials. Journal of Materials Chemistry, 2011. 21(27): p. 9938-9954.
8. Yu, H. and H. Zhou, High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. The journal of physical chemistry letters, 2013. 4(8): p. 1268-1280.
9. Osiak, M., et al., Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. Journal of Materials Chemistry A, 2014. 2(25): p. 9433-9460.
10. Blomgren, G.E., The development and future of lithium ion batteries. Journal of The Electrochemical Society, 2017. 164(1): p. A5019-A5025.
11. Yang, Z., et al., Atomic-Scale Structure-Property Relationships in Lithium Ion Battery Electrode Materials. Annual Review of Materials Research, 2017. 47(1): p. 175-198.
12. Chung, D., E. Elgqvist, and S. Santhanagopalan, Automotive lithium-ion cell manufacturing: Regional cost structures and supply chain considerations. 2016, NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)).
13. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 171-179.
14. Li, W., B. Song, and A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries. Chemical Society Reviews, 2017.
15. Winter, M., et al., Insertion electrode materials for rechargeable lithium batteries. Advanced materials, 1998. 10(10): p. 725-763.
16. Gao, X.-P. and H.-X. Yang, Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci., 2010. 3(2): p. 174-189.
17. Shojan, J. and R.S.C. Katiyar, Investigations on Structural and Electrochemical Properties of Layered Composite Cathode Materials for Li Ion Batteries. 2015.
18. Ohzuku, T., Y. Iwakoshi, and K. Sawai, Formation of Lithium‐Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. Journal of The Electrochemical Society, 1993. 140(9): p. 2490-2498.
19. Gilbert, J.A., et al., Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3–4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes. Journal of The Electrochemical Society, 2016. 164(1): p. A6054-A6065.
20. Shaju, K., G.S. Rao, and B. Chowdari, Performance of layered Li (Ni 1/3 Co 1/3 Mn 1/3) O 2 as cathode for Li-ion batteries. Electrochimica Acta, 2002. 48(2): p. 145-151.
21. Zheng, H., et al., Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells. Journal of Power Sources, 2012. 207: p. 134-140.
22. Gauthier, M., et al., Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. J Phys Chem Lett, 2015. 6(22): p. 4653-72.
23. Haregewoin, A.M., A.S. Wotango, and B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ. Sci., 2016. 9(6): p. 1955-1988.
24. Pieczonka, N.P.W., et al., Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(44): p. 22603-22612.
25. Cho, J., et al., A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angewandte Chemie International Edition, 2003. 42(14): p. 1618-1621.
26. Kraytsberg, A. and Y. Ein-Eli, Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Advanced Energy Materials, 2012. 2(8): p. 922-939.
27. Leggesse, E.G., et al., Adsorption and Decomposition of Ethylene Carbonate on LiMn2O4 Cathode Surface. Electrochimica Acta, 2016. 210: p. 61-70.
28. Barker, J., R. Koksbang, and M.Y. Saidi, An electrochemical investigation into the lithium insertion properties of LixNiO2 (0≤ x≤ 1). Solid State Ionics, 1996. 89(1-2): p. 25-35.
29. Palacin, M.R., Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews, 2009. 38(9): p. 2565-2575.
30. Armstrong, A.R. and P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996. 381(6582): p. 499.
31. Bruce, P., A. áRobert Armstrong, and R. Gitzendanner, New intercalation compounds for lithium batteries: layered LiMnO 2. Journal of Materials Chemistry, 1999. 9(1): p. 193-198.
32. Yabuuchi, N. and T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Journal of Power Sources, 2003. 119-121: p. 171-174.
33. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chemistry of materials, 2009. 22(3): p. 587-603.
34. Bie, X., et al., Relationships between the crystal/interfacial properties and electrochemical performance of LiNi0.33Co0.33Mn0.33O2 in the voltage window of 2.5–4.6V. Electrochimica Acta, 2013. 97: p. 357-363.
35. Park, M.S., First-principles study of native point defects in LiNi(1/3)Co(1/3)Mn(1/3)O2 and Li2MnO3. Phys Chem Chem Phys, 2014. 16(31): p. 16798-804.
36. Chen, Z., et al., Hierarchical Porous LiNi1/3Co1/3Mn1/3O2 Nano-/Micro Spherical Cathode Material: Minimized Cation Mixing and Improved Li(+) Mobility for Enhanced Electrochemical Performance. Sci Rep, 2016. 6: p. 25771.
37. Gummow, R., A. De Kock, and M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics, 1994. 69(1): p. 59-67.
38. Yamada, A., S.-C. Chung, and K. Hinokuma, Optimized LiFePO4 for lithium battery cathodes. Journal of the electrochemical society, 2001. 148(3): p. A224-A229.
39. Yamada, A., et al., Olivine-type cathodes: Achievements and problems. Journal of Power Sources, 2003. 119: p. 232-238.
40. Fisher, C.A.J. and M.S. Islam, Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour. Journal of Materials Chemistry, 2008. 18(11).
41. Kramer, D. and G. Ceder, Tailoring the Morphology of LiCoO2: A First Principles Study. Chemistry of Materials, 2009. 21(16): p. 3799-3809.
42. Shin, Y. and K.A. Persson, Surface Morphology and Surface Stability against Oxygen Loss of the Lithium-Excess Li2MnO3 Cathode Material as a Function of Lithium Concentration. ACS Appl Mater Interfaces, 2016. 8(38): p. 25595-602.
43. Tasker, P., The stability of ionic crystal surfaces. Journal of Physics C: Solid State Physics, 1979. 12(22): p. 4977.
44. AJ Fisher, C., M. Saiful Islam, and H. Moriwake, Atomic level investigations of lithium ion battery cathode materials. Journal of the Physical Society of Japan, 2010. 79(Suppl. A): p. 59-64.
45. Kim, D., et al., Understanding of Surface Redox Behaviors of Li2MnO3 in Li‐Ion Batteries: First‐Principles Prediction and Experimental Validation. ChemSusChem, 2015. 8(19): p. 3255-3262.
46. Kim, Y., H. Lee, and S. Kang, First-principles and experimental investigation of the morphology of layer-structured LiNiO2 and LiCoO2. Journal of Materials Chemistry, 2012. 22(25).
47. Leung, K., First-Principles Modeling of the Initial Stages of Organic Solvent Decomposition on LixMn2O4(100) Surfaces. The Journal of Physical Chemistry C, 2012. 116(18): p. 9852-9861.
48. Tebbe, J.L., T.F. Fuerst, and C.B. Musgrave, Degradation of Ethylene Carbonate Electrolytes of Lithium Ion Batteries via Ring Opening Activated by LiCoO2 Cathode Surfaces and Electrolyte Species. ACS Appl Mater Interfaces, 2016. 8(40): p. 26664-26674.
49. Giordano, L., et al., Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries. J Phys Chem Lett, 2017. 8(16): p. 3881-3887.
50. Tamura, T., M. Kohyama, and S. Ogata, Combination of first-principles molecular dynamics and XANES simulations for LiCoO2-electrolyte interfacial reactions in a lithium-ion battery. Physical Review B, 2017. 96(3).
51. Xu, S., et al., Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface. ACS Appl Mater Interfaces, 2017. 9(24): p. 20545-20553.
52. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 1996. 6(1): p. 15-50.
53. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 1996. 54(16): p. 11169.
54. Momma, K. and F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008. 41(3): p. 653-658.
55. Yang, W. and P.W. Ayers, Density-functional theory, in Computational Medicinal Chemistry for Drug Discovery. 2003, CRC Press. p. 103-132.
56. Kohn, W., Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): p. 1253.
57. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
58. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
59. Oliveira, A.F., et al., Density-functional based tight-binding: an approximate DFT method. Journal of the Brazilian Chemical Society, 2009. 20(7): p. 1193-1205.
60. Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 1988. 38(6): p. 3098.
61. Ceperley, D.M. and B. Alder, Ground state of the electron gas by a stochastic method. Physical Review Letters, 1980. 45(7): p. 566.
62. Lee, I.-H. and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Physical Review B, 1997. 56(12): p. 7197.
63. Perdew, J.P. and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Physical review B, 1986. 33(12): p. 8800.
64. Jain, A., et al., Formation enthalpies by mixing GGA and GGA+ U calculations. Physical Review B, 2011. 84(4): p. 045115.
65. Zhou, F., et al., First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Physical Review B, 2004. 70(23): p. 235121.
66. Wang, L., T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA+ U framework. Physical Review B, 2006. 73(19): p. 195107.
67. Schwerdtfeger, P., The pseudopotential approximation in electronic structure theory. ChemPhysChem, 2011. 12(17): p. 3143-3155.
68. Blöchl, P.E., Projector augmented-wave method. Physical review B, 1994. 50(24): p. 17953.
69. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758.
70. Andreu, N., et al., New Investigations on the Surface Reactivity of Layered Lithium Oxides. The Journal of Physical Chemistry C, 2012. 116(38): p. 20332-20341.
71. Huai, L., Z. Chen, and J. Li, Degradation Mechanism of Dimethyl Carbonate (DMC) Dissociation on the LiCoO2 Cathode Surface: A First-Principles Study. ACS Appl Mater Interfaces, 2017. 9(41): p. 36377-36384.
72. Zucker, R.V., et al., New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes. Journal of Materials Science, 2012. 47(24): p. 8290-8302.
73. Iddir, H., et al., Shape of platinum nanoparticles supported on SrTiO3: Experiment and theory. The Journal of Physical Chemistry C, 2007. 111(40): p. 14782-14789.
74. Roosen, A.R., R.P. McCormack, and W.C. Carter, Wulffman: A tool for the calculation and display of crystal shapes. Computational materials science, 1998. 11(1): p. 16-26.
75. Koyama, Y., et al., Crystal and electronic structures of superstructural Li1−x[Co1/3Ni1/3Mn1/3]O2 (0≤x≤1). Journal of Power Sources, 2003. 119-121: p. 644-648.
76. Koyama, Y., et al., Solid-State Chemistry and Electrochemistry of LiCo1/3Ni1/3Mn1/3 O 2 for Advanced Lithium-Ion Batteries I. First-Principles Calculation on the Crystal and Electronic Structures. Journal of The Electrochemical Society, 2004. 151(10): p. A1545-A1551.
77. Wang, D., et al., Shape control of CoO and LiCoO2 nanocrystals. Nano Research, 2010. 3(1): p. 1-7.
78. Vallverdu, G., et al., First principle study of the surface reactivity of layered lithium oxides LiMO2 (M=Ni, Mn, Co). Surface Science, 2016. 649: p. 46-55.
79. Huang, X., et al., Ab Initio Atomistic Thermodynamics Study of the (001) Surface of LiCoO2 in a Water Environment and Implications for Reactivity under Ambient Conditions. The Journal of Physical Chemistry C, 2017. 121(9): p. 5069-5080.
80. Fu, F., et al., Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery. Journal of Materials Chemistry A, 2013. 1(12).
81. Li, J., R. Yao, and C. Cao, LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery. ACS Appl Mater Interfaces, 2014. 6(7): p. 5075-82.
82. Lu, C.-H. and Y.-K. Lin, Microemulsion preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders. Journal of Power Sources, 2009. 189(1): p. 40-44.