| 研究生: |
陳柏嘉 Chen, Po-Chia |
|---|---|
| 論文名稱: |
用於監控間隔時間之 Erlang Kullback-Leibler資訊管制圖 An Erlang Kullback-Leibler Information Control Chart for Time-between-events Monitoring |
| 指導教授: |
張裕清
Chang, Yu-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 伽馬分佈 、監控間隔時間管制圖 、由後往前檢定法 、單雙邊監控 、Erlang分佈 、Kullback-Leibler information |
| 外文關鍵詞: | Erlang distribution, Kullback-Leibler information, gamma distribution, Time-between-events control chart |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
統計分佈中,Erlang分佈和指數分佈為伽馬分佈的特例,然而由於指數分佈管制圖只須累積發生一個事件就開始進行監控,穩健性可能較差,因此本研究將指數分佈延伸到累積r個事件的Erlang分佈,並且利用兩個統計模型間的資訊落差(Kullback-Leibler information)來建構建立一個Erlang分佈管制圖,其中假設r已知,僅對事件間隔時間的變化進行監控,也就是對到達率進行監控,而實務上則可以應用於監控機台故障間隔時間和診所病患就診的間隔時間等。本研究所建構的管制圖不需要參數設定,然而過往的管制圖例如指數加權移動平均管制圖和累積和管制圖都要進行參數設定,若參數沒有設定在最佳區間時可能會造成管制圖監控績效不佳。此外,由於本研究只需要利用型一誤差的相對應關係便可以得到管制界線,相比指數加權移動平均管制圖和累積和管制圖可以較容易得到管制界線,因此本研究所建構的管制圖在操作上較為容易並且更加方便使用於實務。
本研究所建構的Erlang KLI管制圖會藉由每一期觀察值的加入重新計算檢定統計量以觀察事件間隔時間是否發生變化,並且分別探討當到達率上升或下降時管制圖的監控績效,也會包含同時監控到達率參數λ的上升和下降。本研究所建構的Erlang KLI管制圖與指數KLI管制圖、伽馬EWMA管制圖和伽馬DEWMA管制圖比較後,發現不管是在單邊還是雙邊監控上本研究所建構的管制圖都具有整體或特定位移較佳的優勢,並且管制圖會隨著r越大監控小位移越敏感。最終導入實際案例進行分析,分析中也觀察到Erlang KLI管制圖的監控績效優於指數KLI管制圖、伽馬EWMA管制圖和伽馬DEWMA管制圖。
This study builds an Erlang control chart for monitoring time between events, and extends the exponential distribution to the Erlang distribution with accumulated r events. This study also uses the information difference between the two statistical models (Kullback-Leibler information) to construct a control chart where r is assumed to be known and only the change in event interval times are monitored. The Erlang KLI control chart can be applied to monitor the interval times between machine failures and the interval times between patients visit in clinics, and it does not require parameter(s) setting. However, previous control charts such as EWMA control chart and CUSUM control chart require parameter(s) setting. When the parameter(s) does not set in optimal range, it may result in poor monitoring performance. In addition, the KLI control chart is easier to obtain the control limit than the EWMA control chart and the CUSUM control chart, so it is easier to operate and more convenient to use in practice.
The Erlang KLI control chart constructed in this study compared with the exponential KLI control chart, the gamma EWMA control chart and the gamma DEWMA control chart, it was found that the Erlang KLI control chart has the advantage of monitoring the overall or specific shift. The control chart also becomes more sensitive to small shift as the r increases.
留恩賜,用於監控間隔時間之指數Kullback-Leibler資訊管制圖,國立成功大學
工業與資訊管理研究所碩士論文,民國一百一十年六月。
Alevizakos, V., & Koukouvinos, C. (2019). A double exponentially weighted moving average chart for time between events. Communications in Statistics - Simulation and Computation, 49(10), 2765-2784.
Alevizakos, V., & Koukouvinos, C. (2019). A progressive mean control chart for monitoring time between events. Quality and Reliability Engineering International, 36, 161-186.
Alevizakos, V., & Koukouvinos, C. (2020). Monitoring reliability for a gamma distribution with a double progressive mean control chart. Quality and Reliability Engineering International, 37(1), 199–218.
Ali, S., Pievatolo, A., & Göb, R. (2016). An overview of control charts for high-quality processes. Quality and Reliability Engineering International, 32(7), 2171–2189.
Ali, S., Zafar, T., Shah, I., & Wang, L. (2020). Cumulative conforming control chart assuming discrete weibull distribution. IEEE Access, 1–1.
Alkahtani, S. S. (2013). Robustness of DEWMA versus EWMA control charts to non-normal processes. Journal of Modern Applied Statistical Methods, 12(1), 148-163.
Aslam M, Azam M, & Jun C.-H. (2018). A HEWMACUSUM control chart for the weibull distribution. Communications in Statistics - Theory and Methods, 47(24), 5973– 5985.
Borror, C. M., Montgomery, D. C., & Runger, G. C. (1999). Robustness of the EWMA control chart to non-normality. Journal of Quality Technology, 31(3), 309–316.
Chakraborty, N., Human, S. W., & Balakrishnan, N. (2017). A generally weighted. moving average chart for time between events. Communications in Statistics - Simulation and Computation, 46(10), 7790–7817.
Chan, L. Y., Xie, M., & Goh, T. N. (2000). Cumulative quantity control charts for monitoring production processes. International Journal of Production Research, 38(2), 397–408.
Delpha, C., Diallo, D., & Youssef, A. (2017). Kullback-Leibler divergence for fault estimation and isolation : Application to gamma distributed data. Mechanical Systems and Signal Processing, 93, 118–135.
Fang, Y. Y., Khoo, M. B. C., Teh, S. Y., & Xie, M. (2015). Monitoring of time-between-events with a generalized group runs control chart. Quality and Reliability Engineering International, 32(3), 767–781.
Gan, F. F. (1998). Designs of one- and two-sided exponential EWMA charts. Journal of Quality Technology, 30(1), 55–69.
Graham, M. A., Chakraborti, S., & Human, S. W. (2011). A nonparametric EWMA sign chart for location based on individual measurements. Quality Engineering, 23(3), 227–241.
Han, D. and Tsung, F.G. (2006) A reference-free cuscore chart for dynamic mean change detection and a unified framework for charting performance comparison. Journal of the American Statistical Association, 101(473), 368-386.
He, Y., Liu, F., Cui, J., Han, X., Zhao, Y., Chen, Z., … Zhang, A. (2019). Reliability-oriented design of integrated model of preventive maintenance and quality control policy with time-between-events control chart. Computers & Industrial Engineering, 129, 228-238.
Human, S. W., Kritzinger, P., & Chakraborti, S. (2011). Robustness of the EWMA control chart for individual observations. Journal of Applied Statistics, 38(10), 2071–2087.
Hussain, T., Muhammad, K., Khan, S., & Baik, S. W. (2019). Intelligent baby behavior monitoring using embedded vision in IoT for smart healthcare centers. Journal of Artificial Intelligence and Systems, 1, 110-124.
Knoth, S., Tercero‐Gómez, V. G., Khakifirooz, M., & Woodall, W. H. (in press). The impracticality of homogeneously weighted moving average and progressive mean control chart approaches. Quality and Reliability Engineering International.
Kullback, S. and Leibler, R.A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79-86.
Kumar, N., Baranwal, A. and Chakraborti, S. (2020). Shewhart-type phase II control charts for monitoring times to an event with a guaranteed in-control and good out-of-control performance. Quality and Reliability Engineering International, 36(1), 231-246.
Kupperman, M. (1956). Further applications of information-theory to multivariate-analysis and statistical-inference. Annals of Mathematical Statistics, 27(4), 1184-1186.
Liu, J. Y., Xie, M., Goh, T. N., & Ranjan, P. (2004). Time-between-events charts for on-line process monitoring. 2004 IEEE International Engineering Management Conference (IEEE Cat. No.04CH37574).
Liu, J. Y., Xie, M., Goh, T. N., & Sharma, P. R. (2006). A comparative study of exponential time between Events charts. Quality Technology & Quantitative Management, 3(3), 347–359.
Pereira, N. N. D. S., & Broday, E. E. (2020). Application of control charts for monitoring the waiting time in a basic healthcare unit in Brazil. International Journal for Quality Research, 15(3), 1007–1022.
Rakitzis, A. C. (2015). Monitoring exponential data using two-sided control charts with runs rules. Journal of Statistical Computation and Simulation, 86(1), 149–159.
Roberts, S. W. (1958). Properties of control chart zone tests. Bell System Technical Journal, 37(1), 83–114.
Saghir, A., Ahmad, L., & Aslam, M. (2019). Modified EWMA control chart for transformed gamma data. Communications in Statistics - Simulation and Computation, 1–14.
Sanusi, R. A., Yin The, S., & Khoo, M. B. C. (2020). Simultaneous monitoring of magnitude and time-between-events data with a Max-EWMA control chart. Computers & Industrial Engineering, 106378.
Schlesinger, D. J., Sanders, J. C., Muller, D. A., Nordstrom, H., & Sheehan, J. P. (2021). 8+ year performance of the gamma knife perfexion/icon patient positioning system and possibilities for preemptive fault detection using statistical process control. Medical Physics, 48(7), 3425-3437.
Seghouane, A.-K., & Amari, S.-I. (2007). The AIC criterion and symmetrizing the Kullback–Leibler divergence. IEEE Transactions on Neural Networks, 18(1), 97–106.
Sun, L., Wang, B. X., Guo, B., & Xie, M. (2017). Synthetic exponential control charts with unknown parameter. Communications in Statistics - Simulation and Computation, 47(8), 2360–2377.
van Dobben de Bruyn CS. (1968). Cumulative Sum Tests: Theory and Practice. Griffin, London, England.
Wang, F.-K., Bizuneh, B., & Abebe, T. H. (2017). A comparison study of control charts for weibull distributed time between events. Quality and Reliability Engineering International, 33(8), 2747–2759.
Xie, M., Goh, T. N., & Ranjan, P. (2002). Some effective control chart procedures for reliability monitoring. Reliability Engineering & System Safety, 77(2), 143–150.
Xie, Y. J., Tsui, K. L., Xie, M., & Goh, T. N. (2010). Monitoring time-between-events for health management. 2010 Prognostics and System Health Management Conference.
Xie, Y. J., Zhang, H. Y., & Goh, T. N. (2008). A study on EWMA TBE charts with transformed weibull data. 2008 4th IEEE International Conference on Management of Innovation and Technology.
Yanagimoto, T. (1994). The Kullback-Leibler risk of the Stein estimator and the conditional MLE. Annals of the Institute of Statistical Mathematics, 46(1), 29–41.
Yang, J., Yu, H., Cheng, Y., & Xie, M. (2015). Design of exponential control charts based on average time to signal using a sequential sampling scheme. International Journal of Production Research, 53(7), 2131–2145.
Yang, J., Yu, H., Cheng, Y., & Xie, M. (2015). Design of gamma charts based on average time to signal. Quality and Reliability Engineering International, 32(3), 1041–1058.
Yen, F. Y., Chong, K. M. B., & Ha, L. M. (2013). Synthetic-Type control charts for time-between-events monitoring. PLoS ONE, 8(6), e65440.
Zhang, C. W., Xie, M., Liu, J. Y., & Goh, T. N. (2007). A control chart for the gamma distribution as a model of time between events. International Journal of Production Research, 45(23), 5649–5666.
Zhang, C. W., Ye, Z., & Xie, M. (2017). Monitoring the shape parameter of a weibull renewal process. IISE Transactions, 49(8), 800–813.
校內:2027-06-24公開