簡易檢索 / 詳目顯示

研究生: 施政宏
Shih, Jheng-Hong
論文名稱: 二維與三維氧化鎵之電子性質:第一原理計算
Electronic Properties of 2D and 3D Gallium Oxide: First Principle Calculations
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 27
中文關鍵詞: 氧化鎵第一原理二維材料
外文關鍵詞: gallium oxide, first principle, 2D materials
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自石墨烯在2004年被成功發現以來,帶動了各種單元和雙元二維材料的研究發展,並且III-VI族相關的二維材料已在實驗室成功合成。作為III-VI族材料之一,二維氧化鎵尚未在實驗室中成功合成,此外,氧化鎵的三維材料具有很大的應用價值。

    在本文中我們用Vienna Ab initio Simulation Package(VASP)計算和分析二維和三維氧化鎵的幾何結構、空間電荷密度、能帶結構和態密度,並探討其中相關的物理機制。

    Since the successful discovery of graphene in 2004, it has driven the research and development of various unitary and binary two-dimensional materials, and III-VI-related two-dimensional materials have been successfully synthesized in the laboratory. As one of the III-VI group materials, 2D gallium oxide has not been successfully synthesized in the laboratory. In addition, the three-dimensional material of gallium oxide has great application value.

    In this paper, the Vienna Ab initio Simulation Package(VASP) is used to calculate and analyze the geometric structure, space charge density, band structure, and density of states of 2D and 3D gallium oxide, and explore the related physical mechanisms.

    摘要 i Abstract ii Table of contents iii List of tables iv List of figures v I. Introduction 1 II. The Crystal Phases of Gallium Oxides 4 III. Band Structure 6 IV. Density of States 10 V. Conclusion 12 VI. Figures and Tables 14 VII. Reference 26

    [1] Stepanov, S., et al., Gallium OXIDE: Properties and applica 498 a review. Rev. Adv. Mater. Sci, 44 63-86 (2016).
    [2] Sasaki, K., et al., MBE grown Ga2O3 and its power device applications. Journal of Crystal Growth, 378 591-595 (2013).
    [3] He, H., et al., First-principles study of the structural, electronic, and optical properties ofGa2O3in its monoclinic and hexagonal phases. Physical Review B, 74 19, (2006).
    [4] Demirci, S., et al., Structural and electronic properties of monolayer group III monochalcogenides. Physical Review B, 95 11, (2017).
    [5] Hafner, J., Materials simulations using VASP—a quantum perspective to materials science. Computer Physics Communications, 177 1-2, 6-13 (2007).
    [6] Hafner, J., Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond. Journal of computational chemistry, 29 13, 2044-2078 (2008).
    [7] Rapaport, D.C. and D.C.R. Rapaport, The art of molecular dynamics simulation. 2004: Cambridge university press.
    [8] Sobota, J.A., Y. He, and Z.-X. Shen, Angle-resolved photoemission studies of quantum materials. Reviews of Modern Physics, 93 2, (2021).
    [9] Binnig, G. and H. Rohrer, Scanning tunneling microscopy—from birth to adolescence. Reviews of Modern Physics, 59 3, 615-625 (1987).
    [10] Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 81 1, 109-162 (2009).
    [11] Dai, Z.R., Z.W. Pan, and Z.L. Wang, Gallium Oxide Nanoribbons and Nanosheets. The Journal of Physical Chemistry B, 106 5, 902-904 (2002).
    [12] Sharma, S. and M.K. Sunkara, Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes. Journal of the American Chemical Society, 124 41, 12288-12293 (2002).
    [13] Hubbard, J., Electron correlations in narrow energy bands. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 276 1365, 238-257 (1963).
    [14] Reich, S., et al., Tight-binding description of graphene. Physical Review B, 66 3, (2002).
    [15] Van Hove, L., The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal. Physical Review, 89 6, 1189-1193 (1953).
    [16] Li, G., et al., Observation of Van Hove singularities in twisted graphene layers. Nature Physics, 6 2, 109-113 (2010).
    [17] Charlier, J.-C., X. Gonze, and J.-P. Michenaud, Graphite interplanar bonding: electronic delocalization and van der Waals interaction. EPL (Europhysics Letters), 28 6, 403 (1994).
    [18] Novoselov, K., et al., 2D materials and van der Waals heterostructures. Science, 353 6298, aac9439 (2016).

    下載圖示 校內:2025-07-18公開
    校外:2025-07-18公開
    QR CODE