| 研究生: |
余健源 Yu, Chien-Yuan |
|---|---|
| 論文名稱: |
銅線於銲線接合製程受衝擊之最適設計 The Feasible Design for the Copper Wire Bonding Process due to Compressive Impact |
| 指導教授: |
陳榮盛
Chen, Rong-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 銅銲線接合 、ANSYS 、三維衝擊模擬 、集中應力 、鋁擠出 |
| 外文關鍵詞: | Copper wire bonding, Three-dimensional simulation of the compression, Concentrated stress, Aluminum splashing |
| 相關次數: | 點閱:115 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銲線接合在封裝產業,因技術成熟且產品可靠度高,目前仍是很受歡迎的技術之一,但以往銲線接合製程所使用的銲線以金為主,隨著金的價格一直飆升,近幾年來改以銅線取代金線。由金線改成銅線之後,發現銅銲線製程會使元件的可靠度會下降,各材料層應力場的改變也會致使材料層斷裂或破損而失效,因此基板上各層材料層應力場的分布對整體元件的穩定性影響甚大。
本文首先利用ANSYS進行前處理,建造3D模塊,切割網格、設定邊界條件、衝擊路徑、碰撞接觸方法以及最後轉出檔案的類型。將轉出的檔案讀入LS-DYNA分析軟體進行動態衝擊過程模擬,經模擬後,LS-DYNA將輸出很多D3PLOT檔。然後再使用LS-PREPOST分析軟體讀取D3PLOT檔,觀察與分析結構應力場分布與應力集中的部位。其次,進行文獻比對以驗證分析模型之正確性,隨後改變材料及幾何尺寸,甚至導線層之導通孔等,並說明設計原因。
最後,探討與分析各組實驗結果,將能顯著改善鋁擠出現象或降低Low-K IMD層集中應力之設計因子列為最適設計參數,再結合所有最適參數建立最適化模型。其結果顯示可藉由增加銲墊材料降伏強度、使用迴圈式導孔排列方法、選用TEOS之Low-K材料提升銅銲線製程元件的可靠度,最適化模型分別改善87.7%的鋁擠出、降低92.6%銲墊的最大等效塑性應變、改善27.5%銲墊集中應力、降低16.9%Low-K IMD層集中應力、降低45.3%Low-K IMD最大等效塑性應變。
In recent year, copper wire bonding has become the most popular technology in integrated circuit packaging due to gold price be more and more expensive. Hence, most integrated circuit packaging factory have changed process to copper wire bonding.
First of all, using ANSYS to build three-dimensional model,using LS-DYNA to simulate dynamic impact in copper wire bonding.Then, using LS-PREPOST to observe the stress distribution and the site of stress concentration in pad and Low-K IMD layer. Also observe the aluminum splashing in pad by the LS-PREPOST.
Through five types underpad microstructure design and two types materials design, we intend to reduce aluminum splashing and reduce stress concentration in Low-K IMD layer. In order to increase integrated circuit packaging reliability and avoid Low-K IMD layer leading to crack or malfunction
The result shows that the reliability of the copper wire bonding can be upgraded by increasing yielding strength of pad, applying the looped type of vias and TEOS with Low-K material. The feasible model is facilitated to improve 87.7% of the aluminum squeeze splashing、reduce 92.6%of the maximum effect plastic strain of the wire bonding, improve 27.5% of the concentrated stress of wire bonding、reduce 16.9% of the concentrated stress in the Low-K IMD layer and reduce 45.3% of the maximum effect plastic strain of the Low-K IMD layer, respectively.
[1] J. Chen, D. Degryse, P. Ratchev and I. de Wolf,“Mechanical issues of Cu-to-Cu wirebonding”,IEEE Transactions,Component and Packaging Technologies,Vol.27,Iss.3,pp.539-545,2004
[2] C.J. Hung, C.Q. Wang, Y.H. Tian, M. Mayer and Y. Zhou,“Microstructural study of copper free air balls in thermosonic wirebonding”,Microelectronic Engineering ,Vol.85, Iss.8 pp.1815-1819 2008
[3]H. Xu, C. Liu, V. V. Silberschmidt and H. Wang ,“ Effects of process parameters on bondability in thermosonic copper ball bonding”Proc. 58th Electronic Components and Technology Conference,Lake Buena Vista,FL,USA,PP.1424-1430,27-30,May 2008
[4] H. J. Kim,J. Y. Lee,K. W. Pail,K. W. Koh,J. Won,S. Choe,J. Lee,J. T. Moon and Y. J. Park,“Effects of Cu/Al Intermetallic compound on copper wire and aluminum pad bondability” IEEE Transactions Component Packaging Technologies,Vol.26,No.4,pp.367-37,2003
[5] C.Q. Wang,C.J. Hung,Y.H. Tian, M. Mayer ,H. H. Wang and Y. Zhou,“Growth behavior of Cu/Al Intermetallic compounds and crack in copper ball bonds during isothermal aging”Microelectronics Reliability,Vol. 48,November 3,pp. 416-424,2008
[6] H. Xu, C. Liu, V. V. Silberschmidt,S. S. Pramana, T. J. White and Z. Chen, “A Re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads”,Scripta Materialia,Vol.61,Iss.2,pp. 165-168,2009
[7] S. Murali,N. Srikanth and C. J. Vath,III,“An analysis of intermetallics formation of gold and copper ball bonding on thermal aging”Mater.Res.Bull.,Vol.38,November 4,pp. 367-646,2003
[8] C.J. Hung,W. H. Song,I. Lum,M. Mayer,Y. Zhou,C. Q. Wang,J. T. Moon and J. Persic,“Effect of eletronic flame off parameters on copper bonding wire : Free air ball deformability,heat affected zone length,heat affected zone breaking force”Microelectronic Engineering,Vol.86,Iss.10,pp.2094-2103,2009
[9] N. Srikanth,J. Premkumar,M. Sivakumar,Y. M. Wong and C. J. Vath,III,“Effect of wire purity on copper wirebonding” Electronic Packaging Technology Conference,Singapore,pp. 755-759,2007
[10] A. Shah,M. Mayer,Y. N. Zhou,S. J. Hong and J. T. Moon,“Low-stress thermosonic copper ball bonding ”,IEEE Transactions,Electronic Packaging Manufacturing,Vol.32,Iss.3,pp.176-184,2009
[11] A. Shah,M. Mayer,Y. N. Zhou,J. Persic and J. T. Moon“Optimization of ultrasound and bond force to reduce pad stress in thermosonic Cu ball bonding” Electronic Packaging Technology Conference,Singapore,pp 10-15,9-11,Dec.2009
[12] J. Chen,D. Degryse,P. Ratchev and I. De Wolf,“Mechanical issues of Cu-to-Cu wirebonding ”,IEEE Transactions,Components and Packaging Technologies,Vol.27,Iss.3,pp. 539-545,2004
[13] Pei Chieh Chin,Chin Yuan Hu,Hsiang Chen Hsu,Shen Li Fu,Chang Lin Yeh and Yi Shao Lai,“Characteristic of heat affected zone in thin gold wire and dynamic transient analysis of Wire Bonding for Microstructure of Cu/Low-k Wafer”IEEE,PP.297-300,2007
[14] C. L. Yeh,Y. S. Lai and C. L. Kao,“Comprehensive dynamic analysis of wirebonding on Cu/Low-K wafers”IEEE Transactions,Electronic Packaging Manufacturing,Vol.29,No2,pp.264-270,2006
[15] L. C. Chian,N. K. Chai,L. C. Chia,C. M. King,L. O. Seng and C. K. Yau,“Copper wire reliability and bonding integrity robustness on cratering sensitive bond pad structure”,International Conference on Electronics Manufracturing and Technology,Petaling Jaya,pp. 354-364,8-10,2007
[16] Y. Liu,S. Irving and T. Luk,“Thermosonic wirebonding process simulation and bond pad over active stress analysis”IEEE Transactions,Electronic Packaging Manufacturing,Vol.31,No.1,pp.61-71,2008
[17] J. He,Y. Guo and Z. Lin,“Numerical and experimental analysis of thermosonic bond strength considering interfacial contact phenomena ”,Journal of Physics D:Applied Physics,Vol.41,No16,pp. 165-304,2008
[18] V. Fiori“3D multi scale modeling of wirebonding induced peeling in Cu/Low-k interconnects:application of an energy based criteria and correlations with experiments ”Electronic Components and Technology Conference,Reno,NV USA,pp. 256-263,29 MAY,2007
[19]施心智,具定向晶格效應於銅銲線製程之有限元素法模擬與分析,國立中山大學機械與機電工程研究所碩士論文,高雄,台灣,2009
[20]高華柱,“熱效應於銅銲線接合製程之有限元素法模擬”,國立中山大學機械與機電工程研究所碩士論文,高雄,台灣,2010
[21] 張巍耀,“金線與銅線在熱影響區的材料特性及其應用於銲線製程之動態分析”,義守大學機械與自動化工程學系碩士論文,高雄,台灣,2008
[22] H. C. Hsu,C. Y. Hu,W. Y. Chang,C. L. Yeh and Y. S. Lai,“Dynamic Finite Element Analysis on underlay microstructure of Cu low-K wafer during wire bonding”
[23] J. O. Hallquist, LS-DYNA Theoretical Manual, Livermore
Software Technology Corporations, California, USA, 2006
[24] 李裕春,時覺勇,趙遠, ANSYS 11.0/LS-DYNA 基礎理論與
工程實踐,中國水利水電出版社,北京,中國,2008
[25]http://wenku.baidu.com/view/4b7b2243be1e650e52ea9979.html?re=view
[26]http://www.matweb.com/search/DataSheet.aspx?MatGUID=1b8c06d0ca7c456694c7777d9e10be5b&ckck=1
[27] YB.Yang,Kumar N,John D,Hyman R,Clive F,Nathapong S,William Ramroth “A dynamic study of pad structure impact on bond pad/low-K layer stress in copper wire bond”United Test and Assembly Center ,5 Serangoon North Avenue5,Singapore554916
[28] Stevan Hunter,Vail McBride,Bryce Rasmussen,Troy Ruud“Use of Harsh Wafer Probing to Evaluate various Bond Pad Structures” IEEE SW Test workshop,June 12 to 15,2011,San Diego,CA
[29]http://www.matweb.com/search/DataSheet.aspx?MatGUID=f6d0bebbfc7248838243b7fa141431ba
[30] Piet Wessels, Maarten Swanenberg,Jan Claes, Eric R. Ooms. “Advanced 100V, 0.13 gm BCD process for next generation automotive applications” Proceedings of the 18th International Symposium on Power Semiconductor Devices & IC's June 4-8, 2006 Naples, Italy
校內:2017-07-29公開