| 研究生: |
陳曉倩 Chen, Sheau-Chiann |
|---|---|
| 論文名稱: |
穩健估計量在偵測多變量管制圖非隨機變異上之研究 A Study on Robust Estimators for Detecting Non-random Patterns in Multivariate Control Charts |
| 指導教授: |
潘浙楠
Pan, Jeh-Nan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | Hotelling’s T2 管制圖 、平均連串長度 、串長度標準差 、偵測機率 、總誤警率 、穩健估計量 |
| 外文關鍵詞: | average run length, Hotelling’s T2 control chart, overall false alarm rate, robust estimators, signal probability, standard deviation of run length |
| 相關次數: | 點閱:137 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,已有多位學者鑑於傳統的Hotelling’s T^2管制圖在第一階段(Phase I, trial period)無法有效偵測多變量製程中非隨機變異的樣式(non-random patterns)如趨勢(trend)、製程平均移動(process mean shift)或出現離群值(outliers)等製程失控狀態,而嘗試以穩健估計量(robust estimators)的方式建立T^2管制圖。Holmes與Mergen (1993)、Sullivan與Woodall(1996b)以樣本平均數及平均均方連續差建立多變量管制圖,有效地偵測趨勢、製程平均移動,但對離群值之偵測效果卻較差。Vargas(2003)所提出之最小體積橢圓(minimum volume ellipsoid, MVE)固然可有效偵測離群值,但對趨勢、製程平均移動等偵測效果反較差。因此,本研究計畫擬結合上述兩種穩健估計量的優點提出一個新的穩健估計量,並將以模擬的方式估算當多變量製程出現不同非隨機變異的情況下新穩健估計量所建立T^2管制圖的偵測機率(signal probability)。在本論文的第三章,我們透過多個數值實例說明新穩健估計量所建立之T^2管制圖(T^2_{WD}管制圖)可有效地偵測出多變量製程所產生的各種非隨機變異,且在偵測多變量製程可能同時出現趨勢、離群值、製程平均移動等異常變動時有其優越性。
為了進一步評估以穩健估計量建立的多變量管制圖對第二階段(Phase II, monitoring period)偵測能力的影響,在本論文的第四章我們提出衡量第二階段多變量管制圖的方法。並以箱形圖呈現偵測能力模擬結果之分佈情形,進而使用條件平均連串長度(conditional average run length)之期望值及條件連串長度標準差(conditional standard deviation of run length)之中位數作為衡量多變量管制圖長期偵測能力之評估值。藉由多變量管制圖偵測能力的比較結果得知,以新穩健估計量所建立之T^2_{WD}管制圖亦可有效地偵測出第二階段多變量製程之失控狀態。最後,我們以數個數值實例說明製程參數估計量對第二階段多變量管制圖偵測能力的影響。
In the past decade, different robust estimators have been proposed by several researchers to improve the ability for detecting non-random patterns such as trend, process mean shift, and outliers in multivariate Phase I control charts. Though the sample mean vector and the mean square successive difference matrix in the T^2 control chart (Holmes and Mergern, 1993; Sullivan and Woodall, 1996b) is sensitive to the detection of process mean shifts or trends, it is less sensitive to the detection of outliers. Conversely, the minimum volume ellipsoid (MVE) estimators in the T^2 control chart (Vargas, 2003) are sensitive to the detection of outliers, but less sensitive to the detection of trends or shifts in the process mean. Hence, we propose new robust estimators that use the merits of both the mean square successive difference matrix and the MVE estimators in Hotelling’s T^2 control chart. To compare the detection performance of various control charts, a simulation approach has been adopted to estimate control limits and signal probabilities. Our simulation results show that T^2 control chart using the new robust estimators (T^2_{WD} control chart) achieve a well-balanced sensitivity when detecting non-random patterns. In the first part of this dissertation, we demonstrate the usefulness and robustness of our new estimators using three numerical examples.
Since such estimators have not been studied before in a multivariate Phase II control chart, the second part of this dissertation proposes an evaluation method for measuring and comparing the detection performances of various T^2 Phase II control charts. We use box-plots to illustrate our simulation results. The expected value of the conditional average run length (ARL) and the median of the conditional standard deviation of run length (SDRL) are used to evaluate long-run detection performance. The simulation results also indicate that the proposed T^2_{WD} control chart using our new robust estimators achieve well-balanced detection performance in Phase II. These effects are then demonstrated in three numerical examples.
1. Aparisi, F., Avendano, G., and Sanz, J., Techniques to interpret T^2 control chart signals. IIE Transactions, 38 (8), 647-657, 2006.
2. Castano-Tostado, E., Small sample correction factor of the minimum covariance determinant estimator. Communications in Statistics─Simulation and Computation, 29 (4), 1273-1283, 2000.
3. Champ, C .W., Jones, L. A., and Rigdon, S. E., Properties of the T^2 control chart when parameters are estimated. Technometrics, 47 (4), 437-445, 2005.
4. Chan, L. K. and Li, G. Y., A multivariate control chart for detecting linear trends. Communications in Statistics─Simulation and Computation, 23 (4), 997–1012, 1994.
5. Chang, D. J. and Shin, J. K., Multivariate control charts for several related quality characteristics. Journal of Korean Data and Information Science Society, 16 (2), 467-476, 2005.
6. Ferguson, T. S., A course in large sample theory, Chapman & Hall, London, NY, 1996.
7. Gnanadesikan, R. and Kettenring, J. R., Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics, 28 (1), 81-124, 1972.
8. Holmes, D. S. and Mergen, A. E., Improving the performance of the T^2 control chart. Quality Engineering, 5 (4), 619-625, 1993.
9. Johnson, R. A. and Wichern, D. W., Applied multivariate statistical analysis, Prentice-Hall, Upper Saddle River, NJ, 1998.
10. Jensen, W. A., Birch, J. B., and Woodall, W. H., High breakdown estimation methods for phase I multivariate control charts. Quality and Reliability Engineering International, 23 (5), 615-629, 2007.
11. Jensen, W. A., Jones-Farmer, L. A., Champ, C. W., and Woodall, W. H., Effects of parameter estimation on control chart properties: A literature review. Journal of Quality Technology, 38 (4), 349-364, 2006.
12. Lee, M. H. and Khoo, M. B. C., Optimal statistical design of a multivariate EWMA chart based on ARL and MRL. Communications in Statistics—Simulation and Computation, 35 (3), 831-847, 2006.
13. Lowry, C. A. and Montgomery, D. C., A review of multivariate control charts. IIE Transactions, 27 (6), 800-810, 1995.
14. Lu, C. W. and Reynolds, M. R. Jr., EWMA control charts for monitoring the mean of autocorrelated process. Journal of Quality Technology, 31 (2), 166–188, 1999.
15. Mason, R. L., Chou, Y. M., Sullivan, J. H., Stoumbos, Z. G., and Young, J. C., Systematic patterns in T^2 charts. Journal of Quality Technology, 35 (1), 47-58, 2003.
16. Mason, R. L., Tracy, N. D., and Young, J. C., A practical approach for interpreting multivariate T^2. Journal of Quality Technology, 29 (4), 396-406, 1997.
17. Mason, R. L. and Young, J. C., Multivariate Statistical Process Control with Industrial Applications. SIAM, Philadelphia, PA, 2002.
18. Monhor, D., A Chebyshev inequality for multivariate normal distribution. Probability in the Engineering and Informational Sciences, 21 (2), 289–300, 2007.
19. Montgomery, D. C., Introduction to Statistical Quality Control. Wiley, Hoboken, NJ, 2005.
20. Nedumaran, G. and Pignatiello, J. J. Jr., On constructing T^2 control charts for on-line process monitoring. IIE Transactions, 31 (6), 529-536, 1999.
21. Pan, J. N., A study of multivariate pre-control charts. International Journal of Production Economics, 105 (1), 160-170, 2007.
22. Pan, J. N. and Chen, B. D., The comparison of environmental control charts for monitoring autocorrelated air pollution data in Taipei area. Journal of The Chinese Statistical Association, 42 (1), 31–62, 2004.
23. Pan, J. N. and Chen, S. T., Monitoring long-memory air quality data using ARFIMA model. Environmetrics, 19 (2), 209-219, 2008.
24. Quesenberry, C. P., The multivariate short-run snapshot Q chart. Quality Engineering, 13 (4), 679-683, 2001.
25. Rousseeuw, P. J. and Leroy, A. M., Robust regression and outlier detection. Wiley, Hoboken, NJ, 2003.
26. Rousseeuw, P. J. and Van Driessen, K., A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41 (3), 212-223, 1999.
27. Rousseeuw, P. J. and Van Zomeren, B. C., Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association, 85 (411), 633-639, 1990.
28. Rousseeuw, P. J. and Van Zomeren, B. C., Robust distances: simulations and cutoff values. In: Directions in Robust Statistics and Diagnostics, Part II, eds. W. Stahel and S. Weisberg, 34, 195-203 (Springer-Verlag, New York, NJ), 1991.
29. Seber, G. A. F. and Wild, C. J., Nonlinear Regression. Wiley, New York, NY, 1989.
30. Sullivan, J. H., Detection of multiple change points from clustering individual observations. Journal of Quality Technology, 34 (4), 371-383, 2002.
31. Sullivan, J. H. and Woodall, W. H., A control chart for preliminary analysis of individual observations. Journal of Quality Technology, 28 (3), 265-278, 1996a.
32. Sullivan, J. H. and Woodall, W. H., A comparison of multivariate control charts for individual observations. Journal of Quality Technology, 28 (4), 398-408, 1996b.
33. Sullivan, J. H. and Woodall, W. H., Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations. IIE Transactions. 32 (6), 537-549, 2000.
34. Vargas, N. J. A., Robust estimation in multivariate control charts for individual observations. Journal of Quality Technology, 35 (4), 367-376, 2003.
35. Vargas, V. C. C., Lopes, L. F. D. and Sauza, A. M., Comparative study of the performance of the CuSum and EWMA control charts. Computers & Industrial Engineering, 46 (4), 707-724, 2004.
36. Williams, J. D., Woodall, W. H., Birch, J. B., and Sullivan, J. H., Distribution of Hotelling’s T^2 statistic based on the successive differences estimator. Journal of Quality Technology, 38 (3), 217-228, 2006.
37. Wu, J. W., Jang, J. B. and Tsai, T. R., Fuzzy weighted scaled coefficients in semi-parametric model. Annals of the Institute of Statistical Mathematics, 48(1), 97-110, 1996.