| 研究生: |
魏秀珍 Wei, Hsiu-Chen |
|---|---|
| 論文名稱: |
以小集水區崩塌地密度來探討影響曾文水庫流域邊坡穩定之因子 A Discussion on the Influence Factors of the Landslide Density of the Small Catchment in the Tseng-Wen Reservoir Basin of Taiwan |
| 指導教授: |
陳時祖
Chen, Shih-Hsu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 相關性 、小集水區 、影響因子 、崩塌地密度 |
| 外文關鍵詞: | influence factors, correlation, small catchment area, landslide density |
| 相關次數: | 點閱:92 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區人民生活用水大都來自於水庫,因此水庫的品質相當的重要。而水庫集水區因受地形、地質、氣候、人文與土地利用等因素影響,極易發生崩塌現象,致使水庫淤積大量砂石,其對人民生活造成影響。故本文選擇曾文水庫集水區為研究區域,目的是進行了解各邊坡穩定因子如何影響到各小集水區之崩塌地密度,以供後續集水區治理參考及建立集水區防災保育基本數值資料。
研究中,先利用航空照片判釋方式收集崩塌地分佈及土地利用資料,除了土地利用外,也收集地形、地質以及氣象等資料,作為影響崩塌地密度之因子。將影響因子量化後,再將集水區域劃分為157個小集水區。先做山崩密度和個別因子間之線性迴歸,再以類神經網路和複迴歸分析進行計算多項因子分析,同時考慮各因子之權重,最後比較其結果。
分析結果中,發現若將所有8項影響因子均做分析,因子的特性會彼此之間產生影響,其結果就會產生一些不合理的結果。例如,山崩密度與高度、坡度或雨量成負相關。當剔除相關性高的因子,則可把因子的特性顯現出來,獲得較合理之結果。另外,就土地利用(建築密度、農地密度等)因子來說,以山崩密度與其之線性迴歸結果是負相關。這是因為當建築密度或農地密度單獨與崩塌地密度做相關性檢定時,受到高度及坡度等更顯著之因子影響,而產生之現象。若ㄧ起與其他相關性不高之因子做複迴歸分析時,會得到正相關之結果,如此得到之推論是,當建築密度或農地密度增高時,對山坡地之穩定其實是不利的。
The landslides in the reservoir basin affect the effective life of the reservoir and the quality of water supply. Many factors may affect the stability of the slopes in the reservoir basin, such as topography, geology, climate, humanity activity and land utilization. This study chose the Tseng-Wen reservoir basin, which is 481 square km in size, to study the affect of the influence factors on the landslide. Since the study area is too big for cell by cell operation method such as GIS method, the landslide density of each small catchment was then calculated, and the relationship between the influence factors and the landslides densities was then postulated by multiple regression and neural network methods. The landslide density of each catchment area is defined as the ratio of the landslide area divided by the whole area of the catchment.
The first step of this study is to divide the reservoir basin into 157 small cactchment by ArcGIS. Then the landslide inventory and land use map of the study area were made by aerial photo interpretation by using 20 cm ground resolution digital aerial photos and Stereo Graphics Monitor Screen. All the topographic data such as elevation, roughness of elevation, slope angle, and the roughness of the slope angles, are derived from the 40m DEM of the study area. The annual precipitation data was obtained from the weather stations among and near the study area, and the average annual precipitation of each small catchment was obtained by Kriging method.
In the first step of the data analysis, the coefficients of correlation between each pair of data (4 topographic factors, 2 land use factors, 1 climate factor, 1 geology factor, and the landslide density data) were examined. It is found that many influence factors are closely related, in other words, many influence factors are not independent from each other. It is also found that two lad use factors, farm land and construction land density, are negatively related to the landslide density. If all the eight influence factors are put into analysis by the multiple regression and neural network methods, some unreasonable results may be obtained such as negative correlation between slope angle (or annual precipitation) with the landslide density. However, if the real independent factors are used in the analysis work, all the unreasonable result will disappear, and the land use densities will also show a positive correlation with the landslide density. It is concluded that the topographic factors are the most affective factors on the stability of the slopes in the study area, and the negative correlation between land use factors and landslide density is caused by the stronger relationship between the topographic factors and landslide density.
1.Baeza, C.; Corominas, J.,” Assessment of shallow landslidesusceptibility by means of multivariate statistical techniques”, EarthSurface Process and Landforms, 26, pp.1251-1263,2001.
2.Brunsden, D., “The application of systems theory to the study of mass movement”, Geologica Applicata e Idrogeologia., Univ. of Bari.,8(1), pp.185-207,1973.
3.Brunsden, D.,” Landslide perspectives, In: landslides” Geological Society of America, pp.3-28,1979.
4.Coates, D.R.,” Techniques for the morphometric analysis of landslips”, Zeit. Geomorph. Cynamique, 17, pp.78-101,1977.
5.Corominas, J.; Moya, J.; Lloret, A.; Gili, J.A.; Angeli, M.G.; Pasuto, A.; Silvano, S.,” Measurement of landslide displacements using a wireextensometer”, Engineering Geology, 55, pp.149-166,1999.
6.Crozier, M. J.,” Landslides: causes, consequences & environment”,1986.
7.Dai, F.C.; Lee, C.F.,”Frequency-volume relation and prediction of rainfall-induced landslides”, Engineering Geology, 59, pp.253-266,2002.
8.Erskine, C. F.,” Landslides in the vicinity of the Fort Randall reservoir”, S. Dakota. U. S. Geol. Survey Prof. Paper, 675:64,1973
9.Hansen, M.J. “Strategies for classification of landslides”, Slope instability, pp.1-25,1984
10.Harp, E.L.; Jibson, R.W.,”Landslides triggered by the 1944 Northridge”, California earthquake, Bulletin of the Seismological Society of America, 86, 1B, S319-S332,1996.
11.Hutchinson, J.N. and Bhandari, R. K. ,”Undrained loading─a fundamental mechanism of mudflows and other mass movements”, Geotechnique, 21, pp.353-358,1971.
12.Jenson, S.K. , “Automatic Derivation of Hydrologic Basin Characteristics from Digital Elevation Model Data”, Auto-Carto 7 Proceeding, pp.301-310,1985.
13.Jibson, R.W.; Keefer, D.K.”Statistical analysis of factors affectinglandslide distribution in the New Madrid seismic zone”, Tennesseeand Kentucky, Engineering Geology, 27, pp. 509-542,1989.
14.Keefer, D.K.,”Statistical analysis of an earthquake-inducedlandslide distribution - the 1989 Loma Prieta”, California event,Engineering Geology, 58, pp. 231-249,2000.
15.Koukis, G. and Ziourkas, C.,”Slope Instability Phenomena in Greece: A Statistical Analysis”, Bulletin of the International Association of Engineering Geology, 43, pp.47-60,1991.
16.O’Callaghan, J.F. and D.M. Mark , “The Extraction of Drainage Networks from Digital Elevation Data”, Computer Graphics and Image Processing, 28:pp.323-344,1984
17.Ohlmacher, G.C.; Davis, J.C.,”Using multiple logistic regression and GIS technology to predict landslide hazard in Northeast Kansas”,USA, Engineering Geology, 69, pp.331-343,2003.
18.Popov, I.V.,”A scheme for the natural classification of landslides”, Doklady USSR Academy of Sciences, 54, pp.157-159,1946
19.Reiche, P. ,”The Toreva Block; a distinctive landscape type”, J. Geol., 45: pp.538-548,1973
20.Reynoles, S.H.,”Landslips”, Proc. Bris. Nat. Soc., 7: pp.352-357,1932
21.Saro Lee and Jasmi Abdul Talib , “Probabilistic landslide susceptibility and factor analysis” , Environmental Geology, Vol. 47, pp.982-990, 2001.
22.Sharpe, C. F. S.,” Landslides and Related Phenomena”, Columbia Univ. Press, 137,1938.
23.Savarenskii, P. F.,Inzhenernaya geologiya, Moskva,1937.
24.Simon Haykin,”Neural Networks-A Comprehensive foundation”,1999.
25.Terzaghi, K.,” Mechanisms of landslides”, Geol. Soc. Am., Berkey Volume: pp.83-123,1950.
26.Varnes ,”Slope movements and types and processes, In: Landslides: Analysis and Control”, Transportation Res. Board Nat. Ac. Sci., 176, pp.11-33,1978.
27.Wilson, J. P. and Gallant, J. C. Digital terrain analysis, In: Wilson,J. P. and Gallant, J. C. (eds.) “Terrain Analysis – Principles and Applications”, New York: John Wiley & Sons,2000.
28.Zaruba, Q. and Mencl, V,” Landslides and their Control”, New York: Elsevier, 205,1969.
29.中華水土保持學會,「曾文水庫集水區治理績效評估研究」,曾文水庫管理局,pp.1~75,1989。
30.丁宜君,「多變量分析與類神經網路於土石流出量推估之研究-以濁水溪流域為例」,國立中興大學土木工程研究所碩士論文,2005。
31.王智仁,「以現場調查方式分析影響公路岩石邊坡穩定性之工程地質因子---以南橫公路梅山至啞口段為例」,國立成功大學資源工程研究所碩士論文,2001。
32.台灣省政府山地農牧局,「台灣省崩塌地調查報告」,農委會山地工作報告,第24卷,第二期,pp.139,1989。
33.朱聖心,「應用地理資訊系統製作地震及降雨所引致之山崩危險圖」,國立臺灣大學土木工程學研究所碩士論文,2000。
34.何春蓀,「普通地質學」,國立編譯館,1999。
35.何春蓀,「台灣地質概論-台灣地質圖說明書」,經濟部中央地質調查所,2003。
36.李三畏,「台灣崩塌問題探討」,地工技術,第7期,pp.43-49,1984。
37.李文禮,「湖口崩塌地的調查與分析」,國立中央大學應用地質研究所碩士論文,1994。
38.李馨慈,「應用累積位移法於地震引起之山崩潛勢分析」,國立成功大學資源工程研究所碩士論文,2004。
39.林中興,「山坡穩定性評估之因子分析及地理資訊系統之應用」,國立中央大學應用地質研究所碩士論文,1994。
40.林世榮,「南投縣出水溪土石流之工程地質特性研究」,國立台灣大學地質科學研究所碩士論文,2001。
41.林彥享,「運用類神經網路進行地震誘發山崩之潛感分析」,國立中央大學應用地質研究所碩士論文,2003。
42.林成翰,「GPSGISRS應用於南部橫貫公路邊坡災害環境風險評估模式之建置與應用」,國立屏東科技大學土木工程研究所碩士論文,2004。
43.周晏勤,「以遙感探測方法探討南橫公路邊坡破壞之重要因子」,國立成功大學資源工程研究所碩士論文,2000。
44.涂書芳,「以遙感探測方法探討公路邊坡穩定的重要因子-以南橫公路甲仙至啞口為例」,國立成功大學資源工程研究所碩士論文,2001。
45.高雅嫻,「應用山崩密度及累積位移法於地震引起之山崩潛感分析」,國立成功大學資源工程研究所碩士論文,2005。
46.陳文福、洪文傑,「以DTM自動劃定集水區結果之評估」,水土保持學報,28(4),pp.1~14,1996。
47.陳順宇、鄭碧娥,「統計學(三版)」,華泰書局,1998。
48.陳順宇,「迴歸分析(三版)」,華泰書局,2000。
49.陳志豪,「變質岩公路邊坡之破壞潛勢分析-以南橫公路啞口至新武段為例」,國立成功大學資源工程研究所碩士論文,2002。
50.陳連晃、陳念軍、袁 鳳,「TWD97 座標系統的轉換設計與應用」,農林航空測量所,2002。
51.陳崇華,「台十一線海岸公路邊坡崩塌災害分析」,國立東華大學自然資源管理研究所,2005
52.張石角、姜善鑫、胡蘇澄、吳輝龍合編「台灣的崩山」,水土保持教材林業特刊第二十四號,pp.83~95,1989。
53.張子瑩,「降雨與地震對形成崩塌區位之比較研究」,國立台灣大學地理環境資源學研究所碩士論文,2002。
54.張亦超,「國道公路邊坡穩定潛感分析-以國道3號竹山到九如路段及國道10號嶺口到燕巢路段為例」,國立成功大學資源工程研究所碩士論文,2005。
55.曾文水庫工程局,「曾文水庫計畫地質報告彙編」,pp.138~142,1964。
56.黃臺豐,「瑞里地震誘發之山崩」,國立中央大學應用地質研究所碩士論文,1999。
57.葉怡成,「應用類神經網路」,儒林圖書有限公司,1993、1999、2004。
58.楊智堯,「類神經網路於邊坡破壞潛能分析之應用研究」,國立成功大學土木工程研究所碩士論文,1999。
59.楊龍士、雷祖強、周天穎等,「遙感探測理論與分析實務」,文魁資訊,2006。
60.鄒恬慈,「集集地震引發崩山之地貌分析」,國立台灣大學地理環境資源研究所碩士論文,2001。
61.廖軒吾,「集集地震誘發之山崩」,國立中央大學地球物理研究所碩士論文,2000。
62.廖何松,「利用地形計測指標研究台灣南部潮州斷層沿線之活動構造」,國立中央大學應用地質研究所碩士論文,2003。
63.廖啟雯,「機率式地震誘發山崩危害度分析-以國姓地區為例」,國立中央大學地球物理研究所博士論文,2005。
64.潘國樑,「地工遙測技術之應用」,地工技術雜誌,第89 期,pp.5~12 ,2002。
65.鄭傑銘,「應用GIS 進行豪雨及地震引致山崩之潛感性分析」,國立臺灣大學土木工程學研究所碩士論文,2002。
66.鍾育櫻,「921集集大地震前後降雨型崩塌地特徵之比較」,國立台灣大學地理環境資源研究所碩士論文,2005。
67.藍世欽,「工程地質因子對道路邊坡穩定性之影響-以南橫公路甲仙至梅山段為例」,國立成功大學資源工程研究所碩士論文,2000。
68.謝獻仁,「類神經網路於落石坡危險度評估」,國立交通大學土木工程研究所碩士論文,1998。
69.謝豐隆,「落石邊坡危險度與危害度分級與預報」,國立交通大學土木工程研究所碩士論文,1999。
70.顏貽國,「梨山地區邊坡滑動破壞之動態模擬分析研究」,國立屏東科技大學土木工程研究所碩士論文,2000。
71.蘇苗彬,「集水區坡地安定評估之計量分析方法」,中華水土保持學報,第29卷,第2期,pp.105-114,1998。