| 研究生: |
郭忠倫 Kuo, Chung-lun |
|---|---|
| 論文名稱: |
氧化鋁粒徑尺寸與晶型對表面反應性的影響 Particle size and morphology effects on surface reactivity of alumina |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 氧化鋁 、晶型 、矽烷耦合劑 |
| 外文關鍵詞: | alumina, morphology, silane coupling agent |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將各種不同晶型與直徑的氧化鋁粒子(Alumina, Al2O3)和Methacryloxypropyltrimethoxysilane (MPS)進行反應,研究氧化鋁不同晶型(alpha與gamma氧化鋁)和直徑(0.08~25um)對矽烷耦合劑的反應性。
FTIR結果顯示酸洗或鹼洗均無法在一定時間(16小時)內,增加微米級alpha-Al2O3表面OH基披覆量。奈米等級的alpha-Al2O3,由於表面積增加,與MPS間有較佳的反應性。而gamma-Al2O3表面有明顯較多的OH基批覆量,對矽烷耦合劑間的反應性最好。
固態NMR結果顯示gamma-Al2O3與MPS間可產生Si-O-Al鍵結。利用TGA分析可知當反應系統中的MPS/gamma-Al2O3重量比超過0.86時,反應於gamma-Al2O3上的MPS比例便不會隨著MPS添加量的增加而增加,而最高反應量約為0.12 g MPS/g gamma-Al2O3。FT-IR結果顯示MPS在230oC恆溫5分鐘後,已產生明顯的裂解。
In this research, we used several kinds of Al2O3 particles with different particle sizes or crystalline morphology to react with methacryloxypropyltrimethoxysilane (MPS). In an tempt to understand the reactivity of Al2O3 particles with MPS.
FT-IR results showed that neither acid nor base treatment did not produce OH group on the surface of micrometer-sized alpha-Al2O3 particles. The nanometer-sized alpha-Al2O3 particles had a slightly better reactivity with MPS due to the possession of a larger surface area. The gamma-Al2O3 particles had much more OH groups on surface than alpha-Al2O3 (or theta-Al2O3), and thus resulted in a better reactivity with MPS.
Solid-state NMR results showed the presence of Si-O-Al bonds between MPS and the gamma-Al2O3 particles after reaction. TGA results showed that the amount of grafted MPS did not increase when the weight ratio of MPS to gamma-Al2O3 in reaction system is over 0.86. The maximum amount of grafted MPS is about 0.12 g MPS/g gamma-Al2O3. MPS was apparently degraded after being held at 230oC for 5 min.
[1] L. D. Hart, “Alumina Chemicals: Science and Technology Handbook .” U.S.A. (1990)
[2] A. Chandra, L. S. Turing, P. Gopalan, R. M. Rowell, S. Gong, “Study of Utilizing Thin Polymer Surface Coating on The Nanoparticles for Melt Compounding of Polycarbonate/Alumina Nanocomposites and Their Optical Properties.” Compos. Sci. Technol., 68, 768 (2008)
[3] H. Zhao, R. K. Y. Li, “Crystallization, Mechanical, and Fracture Behaviors of Spherical Alumina-Filled Polypropylene Nanocomposites.” J. Polym. Sci., Part B: Polym. Phys., 43, 3652 (2005)
[4] B. J. Ash, R. W. Siegel, L. S. Schadler, “Mechanical Behavior of Alumina/poly(methyl methacrylate) Nanocomposites.” Macromolecules, 37, 1358 (2004)
[5] E. P. Plueddemann, “Silane Coupling Agents, 2ed ” N. Y. (1991)
[6] H. C. Park, Y. B. Lee, S. G. Lee, C. H. Lee, J. K. Kim, S. S. Hong, S. S. S. Park, “Synthesis of Beta-Alumina Powders by Microwave Heating from Solution-Derived Precipitates.” Ceram. Int., 31, 293 (2005)
[7] S. Desset, O. Spalla, P. Lixon, B. Cabane, “Variation of The Surface State of alpha-Alumina Through Hydrothermal Treatments.” Colloids Surf., A, 196,1 (2002)
[8] P. J. Eng, T. P. Trainor, J.G.E. Brown, G. A.Waychunas, M. Newville, S. R. Sutton, M. L. Rivers, Science, 288, 1029 (2000)
[9] J. A. Mieth, Y. J. Huang, J. A. Schwarz, “Experimental Procedures to Evaluate Dissolution, Metal Ion Buffering, and Catalytic Precursor Speciation During Catalyst Preparation” J. Colloid Interface Sci., 123, 366 (1988)
[10] E. Santacesaria, S. Carra, I. Adami, ” Adsorption of Hexachloroplatinic Acid on gamma-Alumina” Ind. Eng. Chem. Prod. Res. Dev., 16, 41 (1977)
[11] G. Lefe`vre, M. Duc, P. Lepeut, R. Caplain, M. Fe´doroff, “Hydration of gamma-Alumina in Water and Its Effects on SurfaceReactivity.” Langmuir, 18, 7530 (2002)
[12] X. Carrier, E. Marceau, J-F. Lambert, M. Che, “Transformations of gamma-Alumina in aqueous suspensions:1.Alumina chemical weathering studied as a function of pH.” J. Colloid Interface Sci., 308, 429 (2007)
[13] N. Nishiyama, K. Horie, “Hydrolysis and Condensation Mechanisms of a Silane Coupling Agent Studied by 13C and 29Si NMR.” J. Appl. Polym. Sci., 34, 1619 (1987)
[14] J. D. Miller, K. P. HOH, H. Ishida, “Studies of the Simulation of Silane Coupling Agent Structure on Praticulate Fillers; The pH effect.” Polym. Compos., 5, 1(1984)
[15] Z. Guo, T. Pereira, O. Choi, Y. Wang, H. T. Hahn, “Surface Functionalized Alumina Nanoparticle Filled Polymeric Nanocomposites with Enhanced Mechanical Properties.”
[16] J. Kim, P. H. Kang, Y. C. Nho, “Characterization of Mechanical Properties of gamma-Al2O3 Dispersed Epoxy Resin Cured by gamma-ray Radiation” J. Appl. Polym. Sci., 91, 1898 (2004)
[17] G. Pompe, L. Häubler, “Investigations of Transesterification in PC/PBT Melt Blends and The Proof of Immiscibility of PC and PBT at Completely Suppressed Transesterification.” J. Polym. Sci., Part B: Polym. Phys. , 35, 2161 (1997)
[18] G. Montaudo, C. Puglisi, F. Samperi, “Chemical Reactions Occurring in The Thermal Treatment of PC/PMMA Blends.” J. Polym. Sci., Part A: Polym. Chem., 36, 1873 (1998)
[19] F. J. Baltaacute Calleja; L. Giri; T. A. Ezquerra; S. Fakirov; Z. Roslaniec, “Microhardness of Condensation Polymers and Copolymers. 1. Coreactive Blends of Polyethylene Terephthalate and Polycarbonates.” J. Macromol. Sci. Part B Phys., 36, 655 (1997)
[20] M. Abboud, M. Turner, E. Duguet, M. Fontanille, “PMMA-based Composite Materials with Reactive Ceramic Fillers:Part 1.-Chemical Modification and Characterisation of Ceramic Particles.” J.Mater. Chem., 7 ,1527 (1997)
[21] M-C. B. Salon, G. Gerbaud, M. Abdelmouleh, C. Bruzzese, S. Boufi, M. N. Belgacem, “Studies of Interactions Between Silane Coupling Agents and Cellulose Febers with Liquid and Solid-State NMR.” Magn. Reson. Chem., 45, 473 (2007)
[22] R. W. Friedl, M. G. T. Hut, H. F. M. Schoo, “Chain Stiffness of Copolycarbonates Containing a Spiro Linkage.” Macromolecules, 29, 5453 (1996)
[23] S. Leo´n, N. V. D. Vegt, L. D. Site, K. Kremer, “Bisphenol A Polycarbonate: Entanglement Analysis from Coarse-Grained MD Simulations.” Macromolecules , 38, 8078 (2005)