研究生: |
高禎鞠 Kao, Chen-Chu |
---|---|
論文名稱: |
探討先天性免疫調控分子TAPE在發炎小體及細菌感染之角色 Emerging roles of TAPE innate immune adaptor in inflammasome regulation and Gram-negative bacterial infection |
指導教授: |
凌斌
Ling, Pin |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | TAPE/CC2D1A分子 、TLR4 、NOD2 、NLRP3 發炎小體 、細胞自噬 |
外文關鍵詞: | TBK1-associated protein in endolysosomes (TAPE)/CC2D1A, TLR4, NOD2, NLRP3 inflammasome, autophagy |
相關次數: | 點閱:64 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
免疫系統會藉由啟動發炎反應用以清除外來入侵的病原菌,以及協助維持身體的恆定性。然而,過度的發炎反應則會造成發炎性疾病,進而對宿主造成危害。其中,敗血性休克症為宿主受到細菌染後,引發廣泛且不能控制的全身性發炎反應。先天免疫系統主要藉由Pattern recognition receptors (PRRs)來辨識外來病原體具高度保留的Pathogen-associated molecular pattern (PAMPs),並有效的引起發炎反應。其中, 細胞中的NLRP3、ASC和pro-caspase-1會相互連接組成NLRP3發炎小體,在偵測到細胞質中入侵的病原菌或接受死亡訊息分子時,會切割caspase-1,促使發炎激素IL-1β和IL-18釋放到細胞外造成發炎反應;而活化的caspase-1也會促使細胞進行快速的計畫性死亡,稱為pyroptosis,使細胞脹破而釋放發炎激素和外來病原菌,用以吸引更多免疫細胞前來共同清除病原菌。此外巨噬細胞自身會藉由吞噬作用及自噬作用來清除病原菌。受到病毒感染時,TBK1會協助訊息傳遞進而引起第一型干擾素等抗病毒的先天免疫反應;最近研究指出,TBK1也會參與在細胞自噬小體的形成,對於清除胞內病原菌扮演重要的角色。我們實驗室之前的研究已經發現一個新的先天免疫調控分子,TAPE (TBK1-Associated Protein in Endolysosomes)會影響TLR3、TLR4及RIG-I-like receptors (RLRs)訊息傳遞。由於已知TLR4是細菌內毒素(LPS)的主要受體,所以我們想要進一步研究,TAPE在內毒素所引起的敗血症以及在細菌感染時的角色為何。實驗結果顯示,TAPE基因缺失的小鼠相較於正常小鼠對於內毒素所引起的敗血症具有抵抗性,並且也發現小鼠體中IL-1α的量較低。這顯示了TAPE可能參與在發炎小體的活化路徑中。首先,利用巨噬細胞給予NLRP3發炎小體的活化刺激下,TAPE的缺失確實能有效的抑制NLRP3發炎小體活化所造成IL-β及IL-1α的釋放。在進一步利用免疫沉澱的實驗中,則發現TAPE會和NLRP3形成複合體。此外我們也發現TAPE缺失的巨噬細胞在給予沙門氏桿菌感染後,無法有效活化發炎激素。有趣的是,我們的實驗結果顯示TAPE可以協助細胞自噬作用清除入侵的沙門氏桿菌。另一方面,TAPE也會結合NOD2,正向調控NOD2活化NF-κB啟動子的活性。最後,在小鼠活體實驗中發現TAPE基因缺失小鼠較正常小鼠容易死於沙門氏桿菌的感染,顯示TAPE在活體內抵抗細菌感染的重要性。總結以上實驗結果,無論是在活體外細胞或活體實驗上,皆證實了TAPE在調控發炎反應、敗血症以及對抗細菌免疫機制的重要性。
Inflammation functions to alarm the host immune system to defend against pathogen invasion or to sustain tissue homeostasis. By contrast, deregulation of inflammation often damages the host by causing infectious or inflammatory diseases. For instance, sepsis/septic shock, a deregulated-inflammation state resulting from the systemic bacterial infection, is detrimental to the host. Pattern-recognition receptors (PRRs) function to trigger inflammation upon detecting microbial components. Among these PRRs, Nod-like receptors (NLRs) constitute a family of intracellular receptors that recognize cytoplasmic PAMPs and danger-associated molecular patterns (DAMPs). NLRP3 is a cytosolic NLR acting to detect various PAMPs and DAMPs to mediate inflammasome activation causing the secretion of pro-inflammatory cytokines, like interleukin-1β (IL-1β) and IL-18, and leading to inflammatory cell death called pyroptosis. In addition to inflammation, the cell-autonomous defense mechanisms, like phagocytosis and autophagy, also play key roles in antibacterial innate immunity. TBK1 is an IKK-related kinase shown to regulate type I IFN induction during virus infection and to regulate autophagy during intracellular bacterial infection. TAPE (TBK1-Associated Protein in Endolysosomes) is a recently identified innate immune regulator implicated in the TLR3, TLR4 and cytosolic RIG-like receptors (RLRs) pathways. Here our work aims to assess the potential role of TAPE in regulating innate immune responses during LPS-induced septic shock and bacterial infection. In this study, we showed that TAPE conditional knockout mice were more resistant to LPS-induced septic shock than wild-type littermates, and were impaired in the production of IL-1α. It suggests that TAPE might link the inflammasome activation to the production of IL-1β and IL-1α. Consistently, ex vivo studies showed that TAPE-deficient macrophages were significantly impaired in IL-1β and IL-1α secretion in response to NLRP3 inducers including ATP and nigericin. Moreover, TAPE was shown to form a complex with NLRP3. Of interest, TAPE-deficient macrophages were also impaired in inflammatory cytokine production upon live S. Typhimurium but not E. coli infection. Furthermore, our results from bacterial load analyses revealed that TAPE-deficient macrophages were defective in restricting live S. Typhimurium but not E.coli infection compared to wild type macrophages. Biochemical analyses showed that the cleavage of an autophagy marker LC3 was impaired in TAPE-deficient macrophages, suggesting that TAPE plays a role in autophagic defense against S. Typhimurium. In addition, TAPE was also shown to bind to cytosolic NOD2, and positively regulated NOD2-mediated NF-κB activation upon S. Typhimurium infection or NOD2 ligand MDP stimulation. Finally, TAPE conditional knockout exhibited a lower survival rate upon S. Typhimurium infection, indicating the in vivo importance of TAPE in antibacterial immunity. Collectively, our findings demonstrate the importance of TAPE in regulating inflammation, sepsis and Gram-negative bacterial infection.
1. Janeway, C. A., Jr. (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor symposia on quantitative biology 54 Pt 1, 1-13
2. Bruno Lemaitre, E. N., Lydia Michaut, Jean-Marc Reichhart, and Jules A. Hoffmann. (1996) The Dorsoventral Regulatory Gene Cassette spa¨ tzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell 86, 973-983
3. Poltorak, A., Smirnova, I., He, X., Liu, M. Y., Van Huffel, C., McNally, O., Birdwell, D., Alejos, E., Silva, M., Du, X., Thompson, P., Chan, E. K., Ledesma, J., Roe, B., Clifton, S., Vogel, S. N., and Beutler, B. (1998) Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood cells, molecules & diseases 24, 340-355
4. Unterholzner, L., Keating, S. E., Baran, M., Horan, K. A., Jensen, S. B., Sharma, S., Sirois, C. M., Jin, T., Latz, E., Xiao, T. S., Fitzgerald, K. A., Paludan, S. R., and Bowie, A. G. (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11, 997-1004
5. Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., and Liu, Y. J. (2011) The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 12, 959-965
6. Sun, L., Wu, J., Du, F., Chen, X., and Chen, Z. J. (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786-791
7. Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., and Chen, Z. J. (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826-830
8. Kumar, H., Kawai, T., and Akira, S. (2011) Pathogen recognition by the innate immune system. International reviews of immunology 30, 16-34
9. Shizuo Akira, I. A., Akira Hayashi, Kumao Shoutaro Tsuji, Misako Matsumoto, Osamu Takeuchi,Toyoshima and Tsukasa Seya. (2000) Bacillus Calmette-Guérin: Involvement of Wall Skeleton of Mycobacterium bovis Maturation of Human Dendritic Cells by Cell Toll-Like Receptors. Infection and Immunity 68, 6883-6890
10. Cheryl J. Hertz, S. M. K., Paul J. Godowski,Deborah A. Bouis, Michael V. Norgard, Michael D. Roth and Robert L. Modlin. (2001) Microbial Lipopeptides Stimulate Dendritic Cell Maturation Via Toll-Like Receptor 2. The Journal of Immunology 166, 2444-2450
11. Franchi, L., Munoz-Planillo, R., and Nunez, G. (2012) Sensing and reacting to microbes through the inflammasomes. Nature immunology 13, 325-332
12. Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820
13. Broz, P., and Monack, D. M. (2013) Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 13, 551-565
14. Chehimi, J., and Trinchieri, G. (1994) Interleukin-12: a bridge between innate resistance and adaptive immunity with a role in infection and acquired immunodeficiency. Journal of clinical immunology 14, 149-161
15. Harris, N. L., and Ronchese, F. (1999) The role of B7 costimulation in T-cell immunity. Immunology and cell biology 77, 304-311
16. Heguy, A., Baldari, C. T., Macchia, G., Telford, J. L., and Melli, M. (1992) Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila toll protein are essential for IL-1R signal transduction. The Journal of biological chemistry 267, 2605-2609
17. Jin, M. S., Kim, S. E., Heo, J. Y., Lee, M. E., Kim, H. M., Paik, S. G., Lee, H., and Lee, J. O. (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071-1082
18. Kang, J. Y., Nan, X., Jin, M. S., Youn, S. J., Ryu, Y. H., Mah, S., Han, S. H., Lee, H., Paik, S. G., and Lee, J. O. (2009) Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31, 873-884
19. da Silva Correia, J., Soldau, K., Christen, U., Tobias, P. S., and Ulevitch, R. J. (2001) Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. The Journal of biological chemistry 276, 21129-21135
20. Gioannini, T. L., Teghanemt, A., Zhang, D., Coussens, N. P., Dockstader, W., Ramaswamy, S., and Weiss, J. P. (2004) Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proceedings of the National Academy of Sciences of the United States of America 101, 4186-4191
21. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., and Mathison, J. C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-1433
22. Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H., and Lee, J. O. (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191-1195
23. Arpaia, N., Godec, J., Lau, L., Sivick, K. E., McLaughlin, L. M., Jones, M. B., Dracheva, T., Peterson, S. N., Monack, D. M., and Barton, G. M. (2011) TLR signaling is required for Salmonella typhimurium virulence. Cell 144, 675-688
24. Takeuchi, O., Hoshino, K., and Akira, S. (2000) Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. Journal of immunology 165, 5392-5396
25. Hoebe, K., Georgel, P., Rutschmann, S., Du, X., Mudd, S., Crozat, K., Sovath, S., Shamel, L., Hartung, T., Zahringer, U., and Beutler, B. (2005) CD36 is a sensor of diacylglycerides. Nature 433, 523-527
26. Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., and Janeway, C. A., Jr. (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Molecular cell 2, 253-258
27. Hoebe, K., Du, X., Georgel, P., Janssen, E., Tabeta, K., Kim, S. O., Goode, J., Lin, P., Mann, N., Mudd, S., Crozat, K., Sovath, S., Han, J., and Beutler, B. (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743-748
28. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 4, 161-167
29. Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., and Akira, S. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643
30. Kagan, J. C., Su, T., Horng, T., Chow, A., Akira, S., and Medzhitov, R. (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9, 361-368
31. Carty, M., Goodbody, R., Schroder, M., Stack, J., Moynagh, P. N., and Bowie, A. G. (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nature immunology 7, 1074-1081
32. Kollewe, C., Mackensen, A. C., Neumann, D., Knop, J., Cao, P., Li, S., Wesche, H., and Martin, M. U. (2004) Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. The Journal of biological chemistry 279, 5227-5236
33. Skaug, B., Jiang, X., and Chen, Z. J. (2009) The role of ubiquitin in NF-kappaB regulatory pathways. Annual review of biochemistry 78, 769-796
34. Häcker, H., and Karin, M. (2006) Regulation and Function of IKK and IKK-Related Kinases,
35. Ajibade, A. A., Wang, H. Y., and Wang, R. F. (2013) Cell type-specific function of TAK1 in innate immune signaling. Trends in immunology 34, 307-316
36. Chang, L., and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 37-40
37. Fitzgerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., Golenbock, D. T., Coyle, A. J., Liao, S. M., and Maniatis, T. (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature immunology 4, 491-496
38. Sato, M., Tanaka, N., Hata, N., Oda, E., and Taniguchi, T. (1998) Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta gene. FEBS letters 425, 112-116
39. Sato, M., Suemori, H., Hata, N., Asagiri, M., Ogasawara, K., Nakao, K., Nakaya, T., Katsuki, M., Noguchi, S., Tanaka, N., and Taniguchi, T. (2000) Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13, 539-548
40. von Moltke, J., Ayres, J. S., Kofoed, E. M., Chavarria-Smith, J., and Vance, R. E. (2013) Recognition of bacteria by inflammasomes. Annual review of immunology 31, 73-106
41. Ting, J. P., Lovering, R. C., Alnemri, E. S., Bertin, J., Boss, J. M., Davis, B. K., Flavell, R. A., Girardin, S. E., Godzik, A., Harton, J. A., Hoffman, H. M., Hugot, J. P., Inohara, N., Mackenzie, A., Maltais, L. J., Nunez, G., Ogura, Y., Otten, L. A., Philpott, D., Reed, J. C., Reith, W., Schreiber, S., Steimle, V., and Ward, P. A. (2008) The NLR gene family: a standard nomenclature. Immunity 28, 285-287
42. Brubaker, S. W., Bonham, K. S., Zanoni, I., and Kagan, J. C. (2015) Innate immune pattern recognition: a cell biological perspective. Annual review of immunology 33, 257-290
43. Girardin, S. E., Boneca, I. G., Carneiro, L. A., Antignac, A., Jehanno, M., Viala, J., Tedin, K., Taha, M. K., Labigne, A., Zahringer, U., Coyle, A. J., DiStefano, P. S., Bertin, J., Sansonetti, P. J., and Philpott, D. J. (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584-1587
44. Girardin, S. E., Travassos, L. H., Herve, M., Blanot, D., Boneca, I. G., Philpott, D. J., Sansonetti, P. J., and Mengin-Lecreulx, D. (2003) Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. The Journal of biological chemistry 278, 41702-41708
45. Chamaillard, M., Hashimoto, M., Horie, Y., Masumoto, J., Qiu, S., Saab, L., Ogura, Y., Kawasaki, A., Fukase, K., Kusumoto, S., Valvano, M. A., Foster, S. J., Mak, T. W., Nunez, G., and Inohara, N. (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nature immunology 4, 702-707
46. Park, J. H., Kim, Y. G., Shaw, M., Kanneganti, T. D., Fujimoto, Y., Fukase, K., Inohara, N., and Nunez, G. (2007) Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. Journal of immunology 179, 514-521
47. Masumoto, J., Yang, K., Varambally, S., Hasegawa, M., Tomlins, S. A., Qiu, S., Fujimoto, Y., Kawasaki, A., Foster, S. J., Horie, Y., Mak, T. W., Nunez, G., Chinnaiyan, A. M., Fukase, K., and Inohara, N. (2006) Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo. The Journal of experimental medicine 203, 203-213
48. Travassos, L. H., Carneiro, L. A., Girardin, S. E., Boneca, I. G., Lemos, R., Bozza, M. T., Domingues, R. C., Coyle, A. J., Bertin, J., Philpott, D. J., and Plotkowski, M. C. (2005) Nod1 participates in the innate immune response to Pseudomonas aeruginosa. The Journal of biological chemistry 280, 36714-36718
49. Allison, C. C., Kufer, T. A., Kremmer, E., Kaparakis, M., and Ferrero, R. L. (2009) Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. Journal of immunology 183, 8099-8109
50. Hasegawa, M., Yamazaki, T., Kamada, N., Tawaratsumida, K., Kim, Y. G., Nunez, G., and Inohara, N. (2011) Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. Journal of immunology 186, 4872-4880
51. Lala, S., Ogura, Y., Osborne, C., Hor, S. Y., Bromfield, A., Davies, S., Ogunbiyi, O., Nunez, G., and Keshav, S. (2003) Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125, 47-57
52. Geddes, K., Rubino, S., Streutker, C., Cho, J. H., Magalhaes, J. G., Le Bourhis, L., Selvanantham, T., Girardin, S. E., and Philpott, D. J. (2010) Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. Infection and immunity 78, 5107-5115
53. Keestra, A. M., Winter, M. G., Klein-Douwel, D., Xavier, M. N., Winter, S. E., Kim, A., Tsolis, R. M., and Baumler, A. J. (2011) A Salmonella virulence factor activates the NOD1/NOD2 signaling pathway. mBio 2
54. Nakamura, N., Lill, J. R., Phung, Q., Jiang, Z., Bakalarski, C., de Maziere, A., Klumperman, J., Schlatter, M., Delamarre, L., and Mellman, I. (2014) Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509, 240-244
55. Kobayashi, K., Inohara, N., Hernandez, L. D., Galan, J. E., Nunez, G., Janeway, C. A., Medzhitov, R., and Flavell, R. A. (2002) RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194-199
56. Ogura, Y., Inohara, N., Benito, A., Chen, F. F., Yamaoka, S., and Nunez, G. (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. The Journal of biological chemistry 276, 4812-4818
57. Damgaard, R. B., Nachbur, U., Yabal, M., Wong, W. W., Fiil, B. K., Kastirr, M., Rieser, E., Rickard, J. A., Bankovacki, A., Peschel, C., Ruland, J., Bekker-Jensen, S., Mailand, N., Kaufmann, T., Strasser, A., Walczak, H., Silke, J., Jost, P. J., and Gyrd-Hansen, M. (2012) The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Molecular cell 46, 746-758
58. Krieg, A., Correa, R. G., Garrison, J. B., Le Negrate, G., Welsh, K., Huang, Z., Knoefel, W. T., and Reed, J. C. (2009) XIAP mediates NOD signaling via interaction with RIP2. Proceedings of the National Academy of Sciences of the United States of America 106, 14524-14529
59. Bertrand, M. J., Doiron, K., Labbe, K., Korneluk, R. G., Barker, P. A., and Saleh, M. (2009) Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 30, 789-801
60. Philpott, D. J., Sorbara, M. T., Robertson, S. J., Croitoru, K., and Girardin, S. E. (2014) NOD proteins: regulators of inflammation in health and disease. Nature reviews. Immunology 14, 9-23
61. Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J. P., Belaiche, J., Almer, S., Tysk, C., O'Morain, C. A., Gassull, M., Binder, V., Finkel, Y., Cortot, A., Modigliani, R., Laurent-Puig, P., Gower-Rousseau, C., Macry, J., Colombel, J. F., Sahbatou, M., and Thomas, G. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599-603
62. Barrett, J. C., Hansoul, S., Nicolae, D. L., Cho, J. H., Duerr, R. H., Rioux, J. D., Brant, S. R., Silverberg, M. S., Taylor, K. D., Barmada, M. M., Bitton, A., Dassopoulos, T., Datta, L. W., Green, T., Griffiths, A. M., Kistner, E. O., Murtha, M. T., Regueiro, M. D., Rotter, J. I., Schumm, L. P., Steinhart, A. H., Targan, S. R., Xavier, R. J., Consortium, N. I. G., Libioulle, C., Sandor, C., Lathrop, M., Belaiche, J., Dewit, O., Gut, I., Heath, S., Laukens, D., Mni, M., Rutgeerts, P., Van Gossum, A., Zelenika, D., Franchimont, D., Hugot, J. P., de Vos, M., Vermeire, S., Louis, E., Belgian-French, I. B. D. C., Wellcome Trust Case Control, C., Cardon, L. R., Anderson, C. A., Drummond, H., Nimmo, E., Ahmad, T., Prescott, N. J., Onnie, C. M., Fisher, S. A., Marchini, J., Ghori, J., Bumpstead, S., Gwilliam, R., Tremelling, M., Deloukas, P., Mansfield, J., Jewell, D., Satsangi, J., Mathew, C. G., Parkes, M., Georges, M., and Daly, M. J. (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nature genetics 40, 955-962
63. Travassos, L. H., Carneiro, L. A., Ramjeet, M., Hussey, S., Kim, Y. G., Magalhaes, J. G., Yuan, L., Soares, F., Chea, E., Le Bourhis, L., Boneca, I. G., Allaoui, A., Jones, N. L., Nunez, G., Girardin, S. E., and Philpott, D. J. (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature immunology 11, 55-62
64. Cooney, R., Baker, J., Brain, O., Danis, B., Pichulik, T., Allan, P., Ferguson, D. J., Campbell, B. J., Jewell, D., and Simmons, A. (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nature medicine 16, 90-97
65. Homer, C. R., Kabi, A., Marina-Garcia, N., Sreekumar, A., Nesvizhskii, A. I., Nickerson, K. P., Chinnaiyan, A. M., Nunez, G., and McDonald, C. (2012) A dual role for receptor-interacting protein kinase 2 (RIP2) kinase activity in nucleotide-binding oligomerization domain 2 (NOD2)-dependent autophagy. The Journal of biological chemistry 287, 25565-25576
66. Schroder, K., and Tschopp, J. (2010) The inflammasomes. Cell 140, 821-832
67. Zhou, R., Yazdi, A. S., Menu, P., and Tschopp, J. (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225
68. Miao, E. A., Leaf, I. A., Treuting, P. M., Mao, D. P., Dors, M., Sarkar, A., Warren, S. E., Wewers, M. D., and Aderem, A. (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature immunology 11, 1136-1142
69. Bergsbaken, T., Fink, S. L., and Cookson, B. T. (2009) Pyroptosis: host cell death and inflammation. Nature reviews 7, 99-109
70. LaRock, C. N., and Cookson, B. T. (2013) Burning down the house: cellular actions during pyroptosis. PLoS pathogens 9, e1003793
71. McIlwain, D. R., Berger, T., and Mak, T. W. (2013) Caspase functions in cell death and disease. Cold Spring Harbor perspectives in biology 5, a008656
72. Broz, P., Newton, K., Lamkanfi, M., Mariathasan, S., Dixit, V. M., and Monack, D. M. (2010) Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. The Journal of experimental medicine 207, 1745-1755
73. Kayagaki, N., Wong, M. T., Stowe, I. B., Ramani, S. R., Gonzalez, L. C., Akashi-Takamura, S., Miyake, K., Zhang, J., Lee, W. P., Muszynski, A., Forsberg, L. S., Carlson, R. W., and Dixit, V. M. (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246-1249
74. Kayagaki, N., Warming, S., Lamkanfi, M., Vande Walle, L., Louie, S., Dong, J., Newton, K., Qu, Y., Liu, J., Heldens, S., Zhang, J., Lee, W. P., Roose-Girma, M., and Dixit, V. M. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479, 117-121
75. Rathinam, V. A., Vanaja, S. K., Waggoner, L., Sokolovska, A., Becker, C., Stuart, L. M., Leong, J. M., and Fitzgerald, K. A. (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150, 606-619
76. Shi, J., Zhao, Y., Wang, Y., Gao, W., Ding, J., Li, P., Hu, L., and Shao, F. (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature
77. Casson, C. N., Yu, J., Reyes, V. M., Taschuk, F. O., Yadav, A., Copenhaver, A. M., Nguyen, H. T., Collman, R. G., and Shin, S. (2015) Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America
78. Shi, J., Zhao, Y., Wang, Y., Gao, W., Ding, J., Li, P., Hu, L., and Shao, F. (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187-192
79. Cemma, M., and Brumell, J. H. (2012) Interactions of pathogenic bacteria with autophagy systems. Current biology : CB 22, R540-545
80. Birmingham, C. L., Smith, A. C., Bakowski, M. A., Yoshimori, T., and Brumell, J. H. (2006) Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. The Journal of biological chemistry 281, 11374-11383
81. Zheng, Y. T., Shahnazari, S., Brech, A., Lamark, T., Johansen, T., and Brumell, J. H. (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. Journal of immunology 183, 5909-5916
82. Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N., and Randow, F. (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10, 1215-1221
83. Pilli, M., Arko-Mensah, J., Ponpuak, M., Roberts, E., Master, S., Mandell, M. A., Dupont, N., Ornatowski, W., Jiang, S., Bradfute, S. B., Bruun, J. A., Hansen, T. E., Johansen, T., and Deretic, V. (2012) TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223-234
84. Yoshikawa, Y., Ogawa, M., Hain, T., Yoshida, M., Fukumatsu, M., Kim, M., Mimuro, H., Nakagawa, I., Yanagawa, T., Ishii, T., Kakizuka, A., Sztul, E., Chakraborty, T., and Sasakawa, C. (2009) Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature cell biology 11, 1233-1240
85. Ogawa, M., Yoshimori, T., Suzuki, T., Sagara, H., Mizushima, N., and Sasakawa, C. (2005) Escape of intracellular Shigella from autophagy. Science 307, 727-731
86. Wild, P., Farhan, H., McEwan, D. G., Wagner, S., Rogov, V. V., Brady, N. R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., Dotsch, V., Bumann, D., and Dikic, I. (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233
87. Sander, L. E., Davis, M. J., Boekschoten, M. V., Amsen, D., Dascher, C. C., Ryffel, B., Swanson, J. A., Muller, M., and Blander, J. M. (2011) Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385-389
88. Ou, X. M., Lemonde, S., Jafar-Nejad, H., Bown, C. D., Goto, A., Rogaeva, A., and Albert, P. R. (2003) Freud-1: A neuronal calcium-regulated repressor of the 5-HT1A receptor gene. J Neurosci 23, 7415-7425
89. Rogaeva, A., Galaraga, K., and Albert, P. R. (2007) The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. Journal of neuroscience research 85, 2833-2838
90. Nakamura, A., Naito, M., Tsuruo, T., and Fujita, N. (2008) Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Molecular and cellular biology 28, 5996-6009
91. Martinelli, N., Hartlieb, B., Usami, Y., Sabin, C., Dordor, A., Miguet, N., Avilov, S. V., Ribeiro, E. A., Jr., Gottlinger, H., and Weissenhorn, W. (2012) CC2D1A is a regulator of ESCRT-III CHMP4B. Journal of molecular biology 419, 75-88
92. Usami, Y., Popov, S., Weiss, E. R., Vriesema-Magnuson, C., Calistri, A., and Gottlinger, H. G. (2012) Regulation of CHMP4/ESCRT-III function in human immunodeficiency virus type 1 budding by CC2D1A. J Virol 86, 3746-3756
93. Jaekel, R., and Klein, T. (2006) The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Developmental cell 11, 655-669
94. Zhao, M., Li, X. D., and Chen, Z. (2010) CC2D1A, a DM14 and C2 domain protein, activates NF-kappaB through the canonical pathway. The Journal of biological chemistry 285, 24372-24380
95. Matsuda, A., Suzuki, Y., Honda, G., Muramatsu, S., Matsuzaki, O., Nagano, Y., Doi, T., Shimotohno, K., Harada, T., Nishida, E., Hayashi, H., and Sugano, S. (2003) Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22, 3307-3318
96. Chang, C. H., Lai, L. C., Cheng, H. C., Chen, K. R., Syue, Y. Z., Lu, H. C., Lin, W. Y., Chen, S. H., Huang, H. S., Shiau, A. L., Lei, H. Y., Qin, J., and Ling, P. (2011) TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. J Biol Chem 286, 7043-7051
97. Chen, K. R., Chang, C. H., Huang, C. Y., Lin, C. Y., Lin, W. Y., Lo, Y. C., Yang, C. Y., Hsing, E. W., Chen, L. F., Shih, S. R., Shiau, A. L., Lei, H. Y., Tan, T. H., and Ling, P. (2012) TBK1-associated protein in endolysosomes (TAPE)/CC2D1A is a key regulator linking RIG-I-like receptors to antiviral immunity. The Journal of biological chemistry 287, 32216-32221
98. Chuang, S. Y., Yang, C. H., Chou, C. C., Chiang, Y. P., Chuang, T. H., and Hsu, L. C. (2013) TLR-induced PAI-2 expression suppresses IL-1beta processing via increasing autophagy and NLRP3 degradation. Proceedings of the National Academy of Sciences of the United States of America 110, 16079-16084
99. Murad, S. (2014) Toll-like receptor 4 in inflammation and angiogenesis: a double-edged sword. Frontiers in immunology 5, 313
100. Bosmann, M., Grailer, J. J., Russkamp, N. F., Ruemmler, R., Zetoune, F. S., Sarma, J. V., and Ward, P. A. (2013) CD11c+ alveolar macrophages are a source of IL-23 during lipopolysaccharide-induced acute lung injury. Shock 39, 447-452
101. Pandey, M. K., and Grabowski, G. A. (2013) Immunological cells and functions in Gaucher disease. Critical reviews in oncogenesis 18, 197-220
102. Fitzgerald, K. A., Rowe, D. C., Barnes, B. J., Caffrey, D. R., Visintin, A., Latz, E., Monks, B., Pitha, P. M., and Golenbock, D. T. (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. The Journal of experimental medicine 198, 1043-1055
103. Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfeld, J., and et al. (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80, 401-411
104. Kuida, K., Lippke, J. A., Ku, G., Harding, M. W., Livingston, D. J., Su, M. S., and Flavell, R. A. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267, 2000-2003
105. Khare, S., Dorfleutner, A., Bryan, N. B., Yun, C., Radian, A. D., de Almeida, L., Rojanasakul, Y., and Stehlik, C. (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36, 464-476
106. Lage, S. L., Longo, C., Branco, L. M., da Costa, T. B., Buzzo Cde, L., and Bortoluci, K. R. (2014) Emerging Concepts about NAIP/NLRC4 Inflammasomes. Frontiers in immunology 5, 309
107. Gayle, D. A., Beloosesky, R., Desai, M., Amidi, F., Nunez, S. E., and Ross, M. G. (2004) Maternal LPS induces cytokines in the amniotic fluid and corticotropin releasing hormone in the fetal rat brain. American journal of physiology. Regulatory, integrative and comparative physiology 286, R1024-1029
108. Li, L., Liu, Y., Chen, H. Z., Li, F. W., Wu, J. F., Zhang, H. K., He, J. P., Xing, Y. Z., Chen, Y., Wang, W. J., Tian, X. Y., Li, A. Z., Zhang, Q., Huang, P. Q., Han, J., Lin, T., and Wu, Q. (2015) Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation. Nature chemical biology 11, 339-346
109. Seeley, E. J., Matthay, M. A., and Wolters, P. J. (2012) Inflection points in sepsis biology: from local defense to systemic organ injury. American journal of physiology. Lung cellular and molecular physiology 303, L355-363
110. Mao, K., Chen, S., Chen, M., Ma, Y., Wang, Y., Huang, B., He, Z., Zeng, Y., Hu, Y., Sun, S., Li, J., Wu, X., Wang, X., Strober, W., Chen, C., Meng, G., and Sun, B. (2013) Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell research 23, 201-212
111. Costa, A., Gupta, R., Signorino, G., Malara, A., Cardile, F., Biondo, C., Midiri, A., Galbo, R., Trieu-Cuot, P., Papasergi, S., Teti, G., Henneke, P., Mancuso, G., Golenbock, D. T., and Beninati, C. (2012) Activation of the NLRP3 inflammasome by group B streptococci. Journal of immunology 188, 1953-1960
112. Gallagher, C. M., and Knoblich, J. A. (2006) The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Developmental cell 11, 641-653