簡易檢索 / 詳目顯示

研究生: 洪裕昌
Hung, Yu-Chang
論文名稱: 早期再灌流改善大鼠局部缺血性中風模型中對側官能連繫不良之電生理反應
Early reperfusion improves the recovery of contralateral electrophysiological diaschisis following focal cerebral ischemia in rats
指導教授: 張志涵
Chang, Chi-Han
共同指導教授: 李宜堅
Lee, E-Jian
張冠諒
Chang, Guan-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 36
中文關鍵詞: 急性腦中風早期再灌流電位場電生理官能聯繫不良
外文關鍵詞: acute stroke, early reperfusion, field potentials, electrophysiological diaschisis
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的 評估早期再灌流(Reperfusion)對局部缺血性腦中風(ischemic stroke)模型中電生理學上的好處。 方法 大鼠分別接受了中大腦動脈(MCA)30分鐘暫時性阻塞(第一組, n=8)或90分鐘暫時性阻塞(第二組, n=8),以及遠端中大腦動脈永久性電燒灼(thermocoagulation) (第三組, n=6)。 結果 在局部腦缺血之前,各組之體感覺誘發電位(Somatosensory evoked potentials, SSEPs)皆相當穩定。在局部缺血7天後,第三組同側(缺血側)及對側(正常側)之體感覺誘發電位減少最多,而對側體感覺誘發電位減少即為電生理官能聯繫不良之表現。第一組與第二組(暫時性缺血組)之體感覺誘發電位在兩側也都有減少的情形。隨著缺血時間越久,腦梗塞的範圍便越大,神經行為學上的損害越嚴重,而且同側及對側的體感覺誘發電位減少也越多。 討論 我們認為,早期再灌流可以促進同側及對側電位場上的恢復,這跟腦部受傷後的神經重塑過程可能非常相關。我們也發現對側電生理官能聯繫不良可以因為早期再灌流而大量減少,而且它跟髓質(striatum)的受損範圍大小是無關的。

    Objectives
    We evaluated electrophysiological benefits of reperfusion following ischemic stroke.
    Methods Rats received either transient occlusion of the right middle cerebral artery
    (MCA) for 30 (Group I, n=8) or 90 min (Group II, n=8), or permanent thermocoagulation
    of the distal MCA (Group III, n=6). Results Before ischemia, stable somatosensory
    evoked potentials (SSEPs) were consistently recorded. At 7 days postinsult, Group III
    (permanent occlusion) had greatest reductions in the SSEPs recorded ipsilaterally and
    contralaterally. Group I and Group II (transient ischemic groups) also had depressant
    SSEPs recorded from the ipsilateral ischemic and the contralateral, intact brain
    (electrophysiological diaschisis). However, prolonged ischemia resulted in greater brain
    infarction and increased neurologic deficits in addition to greater reductions in the
    ipsilateral and the contralateral SSEPs. Discussion We concluded that early reperfusion
    facilitates the electrophysiological recovery in both ipsilateral lesional and the
    contralateral, intact brain, which may be closely relevant to post-injury brain rewiring.
    We also demonstrated that contralateral electrophysiological diaschisis could be greatly
    reversed by early reperfusion and is independent of the lesion size of striatum.

    中文摘要.......................................................................................................................I Abstract........................................................................................................................II 誌謝.............................................................................................................................III 目錄............................................................................................................................IV List of Figures.............................................................................................................VI List of Tables.............................................................................................................VII Chapter 1 Introduction………………………………………………………………………1 1-1 Clinical background of stroke….........................................................................1 1-2 Somatosensory evoked potential…………………………………………………..1 1-3 Diaschsis…………………………………………………………………………...…2 1-4 Purpose of research…………………………………………………………………2 Chapter 2 Materials and Mathods...............................................................................3 2-1 Animal preparation, anesthesia, and monitoring………………………………….3 2-2 Experimental model and LCBF monitoring………………………………….….....5 2-3 Somatosensory evoked potential (SSEP) recordings…………………..….…….9 2-4 Animal sacrifice and quantification of ischemic damage…………………….….11 2-5 Neurobehavioral testing and body weight measurements……………………...12 2-6 Statistical analysis.............................................................................................13 Chapter 3 Results……………………………………………….………..…………..…….14 3-1 Mortality and physiological parameters…………………………………….……..14 3-2 Electrophysiological recovery after a 7-day recovery……………………………17 3-3 Histology and functional outcome after a 7-day recovery………………...……22 3-4 Correlation between the histological infarct components and the reductions in SSEPs…………………………………………………………………….....……26 Chapter 4 Discussion……...……………………………………………………..……….29 Chapter 5 Conclusion………………………………………..……………………………32 Reference…………………………………………………………………………..………33

    1. Demaerschalk BM, Yip TR. Economic benefit of increasing utilization of intravenous tissue plasminogen activator for acute ischemic stroke in the United States. Stroke 2005; 36: 2500-2503.
    2. White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci. 2000; 179:1-33.
    3. Gott PS, Karnaze DS, Fisher M. Assessment of median nerve somatosensory evoked potentials in cerebral ischemia. Stroke 1990; 21:1167-1171.
    4. Macdonell RA, Donnan GA, Bladin PF. Serial changes in somatosensory evoked potentials following cerebral infarction. Electroencephalogr Clin Neurophysiol 1991; 80:276-283.
    5. Sakatani K, Iizuka H, Young W. Somatosensory evoked potentials in rat cerebral cortex before and after middle cerebral artery occlusion. Stroke 1990; 21:124-132.
    6. Bordi F, Pietra C, Ziviani L, Reggiani A. The glycine antagonist GV150526 protects somatosensory evoked potentials and reduces the infarct area in the MCAo model of focal ischemia in the rat. Exp Neurol 1997; 145:425-433.
    7. Lee EJ, Wu TS, Lee MY, Chen TY, Tsai YY, Chuang JI, Chang GL. Delayed treatment with melatonin enhances electrophysiological recovery following transient focal cerebral ischemia in rats. J Pineal Res 2004; 36: 33-42.
    8. Lee EJ, Lee MY, Chang GL, Chen LH, Hu YL, Chen TY, Wu TS. Delayed treatment with magnesium reduces brain infarction and improves electrophysiological
    33
    recovery following transient focal cerebral ischemia in rats. J Neurosurg 2005; 102: 1085-1093.
    9. Reinecke S, Lutzenburg M, Hagemann G, Bruehl C, Neumann-Haefelin T, Witte OW. Electrophysiological transcortical diaschisis after middle cerebral artery occlusion (MCAO) in rats. Neurosci Lett 1999; 261: 85-88.
    10. Neumann-Haefelin T, Witte OW. Periinfarct and remote excitability changes after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 2000; 20: 45-52.
    11. Mun-Bryce S, Roberts LJ, Hunt WC, Bartolo A, Okada Y. Acute changes in cortical excitability in the cortex contralateral to focal intracerebral hemorrhage in the swine. Brain Res 2004; 1026: 218-226.
    12. Redecker C, Wang W, Fritschy JM, Witte OW. Widespread and long-lasting alterations in GABA(A)-receptor subtypes after focal cortical infarcts in rats: mediation by NMDA-dependent processes. J Cereb Blood Flow Metab 2002; 22: 1463-1475.
    13. Lee EJ, Wu TS, Chang GL, Li CY, Chen TY, Lee MY, Chen HY, Maynard KI. Delayed treatment with nicotinamide inhibits brain energy depletion, improves cerebral microperfusion, reduces brain infarct volume, but does not alter neurobehavioral outcome following permanent focal cerebral ischemia in Sprague Dawley rats. Curr Neurovasc Res 2006; 3: 203-213.
    14. Lee EJ, Chen HY, Wu TS, Chen TY, Ayoub IA, Maynard KI. Acute administration of Ginkgo biloba extract (EGb 761) affords neuroprotection against permanent and transient focal cerebral ischemia in Sprague-Dawley rats. J Neurosci Res 2002; 68:
    34
    636-645.
    15. Lee MY, K YH, Chen HY, Chen TY, Chen ST, Huang CC, Yang IP, Hsu YS, Wu TS, Lee EJ: Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J Pineal Res 2007; 42: 297-309.
    16. Hung YC, Chen TY, Lee EJ, Chen WL, Huang SY, Lee WT, Lee MY, Chen HY, Wu TS. Melatonin decreases matrix metalloproteinase-9 activation and expression and attenuates reperfusion-induced hemorrhage following transient focal cerebral ischemia in rats. J Pineal Res 2008; 45:459-467.
    17. Tamura DI, Graham J, McCulloch J, Teasdale GM. Focal cerebral ischemia in the rat. 1. Description of technique and early neurological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1981; 1: 53–60.
    18. Pixinos G, Watson C. The rat brain in stereotaxic coordinates. Academic Press, New York, 1982.
    19. Nagasawa H, Kogure K. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 1989; 20:1037-1043.
    20. Memezawa H, Minamisawa H, Smith ML, et al. Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res. 1992; 89:67-78.
    21. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow
    Metab 1990;10: 290-293.
    35
    22. Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 1996; 27:1616-1623.
    23. Clark WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, Eckenstein F. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 2000; 31:1715-1720.
    24. Bolay H, Dalkara T. Mechanisms of motor dysfunction after transient MCA occlusion: persistent transmission failure in cortical synapses is a major determinant. Stroke 1998; 29:1988-1994.
    25. Whishaw IQ, O'Connor WT, Dunnett SB. The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat. Brain 1986; 109:805-843.
    26. Slivka A, Murphy E, Horrocks L. Cerebral edema after temporary and permanent middle cerebral artery occlusion in the rat. Stroke 1995; 26:1061-1066.
    27. Bidmon HJ, Oermann E, Schleicher A, Kato K, Kinscherf R, Buchkremer-Ratzmann I, Witte OW, Zilles K. Copper-zinc superoxide dismutase and isolectin B4 binding are markers for associative and transhemispheric diaschisis induced by focal ischemia in rat cortex. Neurosci Lett 1997; 228:163-166.
    28. Nakano S, Kogure K, Fujikura H. Ischemia-induced slowly progressive neuronal damage in the rat brain. Neuroscience 1990; 38:115-124.
    29. Du C, Hu R, Csernansky CA, Hsu CY, Choi DW. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Metab 1996; 16:195-201.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE