| 研究生: |
蔡健婷 Tsai, Chien-ting |
|---|---|
| 論文名稱: |
ACSL在癌細胞中所扮演的角色 The Novel Role of Acyl-CoA Synthetase Long-chain Family Members in Cancer |
| 指導教授: |
賴明德
Lai, Ming-Derg |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 脂質 、肝癌 、內質網壓力 |
| 外文關鍵詞: | cancer, endoplasmic reticulum stress, fatty acid, Acyl-CoA synthetase long-chain family, siRNA |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在真核細胞中,維持細胞的恒定與脂質的製造最主要的胞器是內質網(Endoplasmic Reticulum;ER),當蛋白質在製造過程中無法正常的摺疊(folded)或發生構型異常(misfloded),就會累積在內質網中造成內質網壓力,進而啟動內質網上的三個感應器(sencer),分別為PKR-related ER kinase(PERK), inositol requiring enzyme-1(IRE1), 以及activating transcription factor 6(ATF6)。許多原因都會引起內質網壓力,像是B型肝炎病毒或是C 型肝炎病毒的感染、酒精的濫用等等,而在這些情況下都會造成罹患脂肪肝的比例增加。此外,在數十種惡性腫瘤,像是肝癌( hepatocellular carcinoma ;HCC )中,都有伴隨內質網壓力升高的情形,然而目前對於內質網壓力是如何引起脂質累積的機制仍需進一步釐清。脂質合成酶(Fatty acid synthase;FAS)是脂質合成過程中的重要酵素,在本實驗室之前的研究發現脂質合成酶的抑制劑淺藍菌素(Cerulenin),無法成功抑制內質網壓力造成的脂質累積情形。 而在合成脂質時,細胞除了重新合成的路徑(de novo pathway)外,也會利用外源性的游離脂肪酸併入三酸甘油酯(triacylglycerol;TG)中。在本篇研究中,我們著重於研究長鏈型醯基輔酵素A 合成酵素(Aacyl-CoA synthetase long-chain;ACSL),它是脂肪酸要形成TG 過程中,第一個作用的酵素,此酵素主要可將長鏈脂肪酸催化為醯基輔酵素A 硫酯(acyl-CoA thioesters),在進入生合成或代謝的路徑。ACSL 具有5 個成員,分別是ACSL1、ACSL3、ACSL4、ACSL5以及ACSL6。除了ACSL6 以外,其他四個成員在肝細胞當中都有表現。我們接著利用ACSL1、ACSL3 和ACSL 4 的共同抑制劑Triacsin C,發現可以成功抑制掉內質網壓力造成的脂質累積現象。其中會受到Triacsin C抑制的ACSL3 可以受到內質網壓力的調控而活化。此活化現象可能是透過Eukaryotic translation initiation factor 2 alpha subunite(eIF-2alpha)或是Apoptosis signal-regulating kinase 1 (ASK1)複合體的調控。我們進一步利用核醣核酸干擾技術(RNAi)抑制Huh7 細胞中的ACSL3,也可以成功抑制掉內質網壓力造成的脂質累積現象。並發現在細胞中,ACSL3 的缺乏抑制了細胞的爬行能力,並且生長速率稍慢但沒有顯著的差異。而在利用流式細胞儀Flow Cytometry 分析細胞週期發現,抑制ACSL3 似乎可以令Huh7 對於抗癌藥物5-氟尿嘧啶(5-Fluorouracil;5-FU)的敏感度。在未來我們將會進一步觀察ACSL3 siRNA 是否可以作為新的癌症治療分子。
The endoplasmic reticulum (ER) is a major organelle maintaining cellular homeostasis. Accumulation of unfolded /misfolded proteins in the ER lumen induces ER stress which is mediated by three sensors, PKR-related ER kinase (PERK), inositol requiring enzyme-1 (IRE1), and activating transcription factor 6 (ATF6). ER stress is induced in many situations such as HBV or HCV infection, alcohol consumption, and the rate of fatty liver is elevated under these diseases. Moreover, ER stress is induced in at least ten different cancers such as hepatocellular carcinoma (HCC). However, the signaling pathways and mechanisms linking ER stress to lipid accumulation are not well characterized. Fatty acid synthase (FAS) is a key enzyme in de novo lipogenesis pathway. Our lab’s previous study has shown that the FAS inhibitor, Cerulenin, could not block the lipid accumulation under ER stress condition. Besides de novo pathway, exogenous free fatty acids could also incorporation into triacylglycerol (TAG). In this study, we focus on acyl-CoA synthetase long-chain (ACSL) family, which catalyzed the first step in fatty acid metabolism by converting long-chain fatty acid into acyl-CoA thioesters and entered both anabolic and catabolic pathways. The family of mammalian ACSLs consisted of five members, ACSL1, ACSL3, ACSL4, ACSL5, and ACSL6. All members could be detected in liver except ACSL6. We used Triacsin C, an inhibitor of recombinant ACSL1, 3, and 4 to block the lipid accumulation under ER stress successfully. Among these members, ACSL3 could be induced by ER stress. This activation was probably mediated through eIF-2alpha and ASK1 complex activation. But the detail mechanism of ACSL family activation remained to be defined. Therefore, the ACSL3 knockdown stable clones were established and the lipid accumulation under ER stress was blocked. We further investigated the role of ACSL3 in tumerogenesis under ER stress. We used MTT assay and boyden chamber to detect cell growth and migration. The growth rates had no significant change but migration activity of ACSL3 siRNA stable clone is lower than parental cell. We use flow cytometry to analyze cell cycle, and found that ACSL3 siRNA might increase sensitivity of Huh7 cells to 5 Fluorouracil. In the future, we would test whether ACSL3 siRNA can be a therapeutic agent.
Achouri, Y.; Hegarty, B.D.; Allanic, D.; Becard, D.; Hainault, I.; Ferre, P.;Foufelle, F. Long chain fatty acyl-CoA synthetase 5 expression is induced by insulin and glucose: involvement of sterol regulatory element-binding
protein-1c. Biochimie. 87:1149-55. 2005.
Benali-Furet, N.L.; Chami, M.; Houel, L.; De Giorgi, F.; Vernejoul, F.;Lagorce, D.; Buscail, L.; Bartenschlager, R.; Ichas, F.; Rizzuto, R.;Paterlini-Brechot, P. Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene. 24:4921-4933.
2005.
Blais, J.D.; Filipenko, V. Bi M.; Ron, D.; Koumenis, C.; Wouters, B.G..; Bell,J.C. Transcription factor 4 is translationally regulated by hypoxic stress. Mol
Cell Biol 24: 7469-7482. 2004.
Coleman, R.A.; Lewin, T.M.; Muoio, D.M. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr. 20:77-103.
2000.
Fujino, T.; Kang, M.J.; Suzuki, H.; Iijima, H.; Yamamoto, T. Molecular characterization and expression of rat acyl-CoA synthetase 3. J Biol Chem.271:16748-52. 1996.
Harding, H.P.; Zhang, Y.; Bertolotti, A.; Zeng, H.; Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol cell. 5:897-904. 2000.
Hochachka, P.W.; Buck, L.T.; Doll, C.J.; Land, S.C. Unifying theory of hypoxia tolerance: molecular/Metabolic defense and rescue mechanisms for surviving oxygen lacl.Proc Natl Acad Sci USA. 93:9493-9498. 1996.
Kaneko, S.; Urabe, T.; Kobayashi, K. Combination chemotherapy for advanced hepatocellular carcinoma complicated by major portal vein thrombosis. Oncology. 62:69-73. 2002.
Kaplowitz, N.; Ji, C. Unfolding new mechanisms of alcoholic liver disease in the endoplasmic reticulum. J Gastroenterol Hepatol. 21:S7-9. 2006.
Kerbel, R.S. Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science, 312: 1171–5. 2006.
Kleizen, B.; Braakman, I. Protein folding and quality control in the endoplasmic reticulum. Curr Opon Cell Biol. 16:343-349. 2004.
Koyama, K.; Chen, G.; Lee, Y.; Unger, R.H. Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Physiol Endocrinol Metab 273: E708–E713. 1997.
Kuhajda, F.P. Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition. 16:202-8. 2000.
Lewin, T.M.; Kim, J.H.; Granger, D.A.; Vance, J.E.; Coleman, R.A. Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J Biol Chem.276:24674-9. 2001
Li, L.O.; Mashek, D.G.; An, J.; Doughman, S.D.; Newgard, C.B.; Coleman,R.A. Overexpression of rat long chain acyl-coa synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. J Biol Chem. 281:37246-55. 2006.
Mashek, D.G.; Bornfeldt, K.E.; Coleman, R.A.; Berger, J.; Bernlohr, D.A.;Black, P.; DiRusso, C.C.; Farber, S.A.; Guo, W.; Hashimoto, N.; Khodiyar,V.; Kuypers, F.A.; Maltais, L.J.; Nebert, D.W.; Renieri, A.; Schaffer, J.E.;
Stahl, A.; Watkins, P.A. Vasiliou, V.; Yamamoto, T.T. Revised nomenclature for the mammalian long-chainacyl-CoA synthetase gene family. : J Lipid Res.45:1958-61. 2004.
Mashek, D.G.; McKenzie, M.A.; Van Horn, C.G.; Coleman, R.A. Rat long chain acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle-RH7777 cells. J Biol Chem. 281:945-50.2006.
Menendez, J.A. ; Lupu, R. Oncogenic properties of the endogenous fatty acid metabolism:molecular pathology of fatty acid synthase in cancer cells. Curr Opin Clin Nutr Metab Care. 9:346-57. 2006.
Mengesdorf, T.; Althausen, S.; Oberndorfer, I.. ; Paschen, W. Response of neurons to an irreversible inhibition of endoplasmic reticulum Ca2+-ATPase: relationship between global protein synthesis and expression and translation
of individual genes. Biochem J. 356:805-812. 2001.
Moenner, M.; Pluquet, O.; Bouchecareilh, M.; Chevet,E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. 67:10631-4.2007.
Mousa, S. A. Cell adhesion molecules: potential therapeutic & diagnostic implications. Mol Biotechnol. 38:33–40. 2008.
Nishitoh, H.; Matsuzawa, A.; Tobiume, K.; Saegusa, K.; Takeda, K.; Inoue, K.;Hori, S.; Kakizuka, A.; Ichijo, H. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine
repeats. Genes Dev. 16:1345-55. 2002.
Ozcan, U.; Cao, Q.; Yilmaz, E.; Lee, A. H.; Iwakoshi, N. N.; Ozdelen, E.;Tuncman, G.; Gorgun, C.; Glimcher, L. H.; Hotamisligil, G. S. Endoplasmic Reticulum Stress Links Obesity, Insulin Action, and Type 2 Diabetes. Science
306:457-461. 2004.
Rutkowski, D.T.; Kaufman, R.J. A trip to the ER: coping with stress. Trends Cell Biol. 14:20-28. 2004.
Ryder, S. D. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (HCC) in adults. Gut. 52:1-8. 2003.
Shimabukuro, M.; Koyama, K.; Chen, G.; Wang, M.Y.; Trieu, F.; Lee, Y.; Newgard, C.B.; Unger, R.H. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci USA. 94: 4637-4641.1997.
Soupene, E.; Kuypers, F. A. Mammalian long-chain acyl-CoA synthetases.
Exp Biol Med (Maywood) 233:507-21. 2008.
Soupene, E.; Kuypers, F. A. Multiple erythroid isoforms of human long-chain
acyl-CoA synthetases are produced by switch of the fatty acid gate domains.
BMC Mol Biol 7: 1471-2199. 2006.
Wang, H.C.; Huang, W.Y.; Lai, M.D.; Su, I.J. Hepatitis B virus pre-S mutants,
endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci. 97:683-8.
2006.
Yao, H.; Ye, J. Long Chain Acyl - CoA Synthetase 3 - mediated
Phosphatidylcholine Synthesis Is Required for Assembly of Very Low
Density Lipoproteins in Human Hepatoma Huh7 Cells. J Biol Chem.
283:849-54. 2008
Zhou, W.; Han, W.F.; Landree, L.E.; Thupari, J.N.; Pinn, M.L.; Bililign, T.;
Kim, E.K.; Vadlamudi, A.; Medghalchi, S.M.; El Meskini, R.; Ronnett, G.V.;
Townsend, C.A.; Kuhajda, F.P. Fatty acid synthase inhibition activates
AMP-activated protein kinase in SKOV3 human ovarian cancer cells. Cancer
Res. 67:2964-71. 2007.