簡易檢索 / 詳目顯示

研究生: 張延任
Chang, Yen-Jen
論文名稱: 以額外介電層與非對稱水平配向法製作無不連續線之液晶透鏡陣列暨其應用於積分成像系統研究
Fabrication of Free Disclination Line Liquid Crystal Lens Arrays via Extra Dielectric Layers in Asymmetric Homogeneous Cells and Their Performance in Integral Imaging System
指導教授: 許家榮
Sheu, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 54
中文關鍵詞: 液晶透鏡陣列不連續線積分成像
外文關鍵詞: liquid crystal, lens array, disclination line, integral imaging
相關次數: 點閱:134下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究如何製作無不連續線的液晶透鏡陣列,並將其應用於積分成像系統(Integral imaging system)中,觀察其立體影像的成像品質及相關特性。研究中首先討論各種製程方法對於避免不連續線的影響程度,透過「加入額外介電層法」、「混合配向法」、「光聚合穩固配向法」的互相比較,找出最佳的製程參數以製作無不連續線的液晶透鏡陣列。實驗結果利用加入介電層法及不對稱水平配向法成功製作出了無不連續線的液晶透鏡陣列,其最短焦距可達0.7 cm,操作電壓約在4~15 Vrms。
    其次將無不連續線的液晶透鏡陣列應用於積分成像系統中,找出最佳的成像距離位置,並量測出可視角範圍約4.5˚。最後驗證了方位視差(Motion parallax)效果,以及比較液晶透鏡陣列有無不連續線時的影像品質狀況。相較於本實驗室過往的研究結果,本研究方法製作的液晶透鏡在成像品質及聚焦能力上皆有良好的表現。

    In this thesis, a few ways used to fabricate liquid crystal lens arrays without disclination line issues are investigated. Simultaneously, free disclination line liquid crystal lens arrays are demonstrated their optical performance in integral imaging system. Comparing experimental results for preventing disclination line occurrence among the executed ways, a fabrication way with an extra dielectric layer in asymmetric homogeneous cells is an optimal choice to successfully fabricate free disclination line LC lens arrays. The completed LC lens array shows its minimum focal length of 0.7 cm when operating voltages in the range of 4~15 Vrms.
    The optimal LC lens array is also used in integral image system to demonstrate autostereoscopic performance. As a result, it achieves capability of viewing angle about 4.5˚ for autostereoscopic images and obvious motion parallax performance. In conclusion, free disclination line LC lens arrays in this study show better optical performance than that in previous work.

    目錄 中文摘要 i 英文延伸摘要 ii 誌謝 v 目錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 實驗原理 4 2.1 液晶材料特性 4 2.2 圓孔型圖樣電極液晶透鏡原理 6 2.3 圓孔型圖樣電極液晶透鏡 8 2.3.1 液晶透鏡焦距與干涉條紋關係 8 2.3.2 不連續線產生的原因 10 2.3.3 解決不連續線的方法 12 2.4 積分成像系統原理 14 第三章 實驗方法 16 3.1 製作液晶透鏡陣列 16 3.1.1 圓孔型圖樣電極製作方法 16 3.1.2 塗佈介電層薄膜 17 3.1.3 塗佈配向層 17 3.1.4 組裝液晶透鏡及調配光聚合物液晶 18 3.2 量測液晶透鏡陣列的光學特性 19 3.2.1 量測設備架構 19 3.2.2 量測干涉條紋 20 3.2.3 量測焦距 21 3.3 積分成像系統架構 22 第四章 實驗結果與討論 23 4.1 NOA65厚度對防止不連續線的影響 23 4.1.1 介電層厚度對電場分布關係的模擬結果 23 4.1.2 等待電壓法比較結果 25 4.2 光聚合穩定法對防止不連續線的影響 27 4.2.1 光聚合物的濃度比較 27 4.2.2 曝光強度與時間對液晶透鏡之影響 30 4.3 不同配向預傾角對液晶透鏡特性影響 32 4.3.1 利用較高預傾角材料製作不對稱水平配向液晶盒 32 4.3.2 預傾角與NOA65厚度對液晶透鏡焦距之影響 33 4.3.3 干涉條紋與焦距分析 37 4.3.4 液晶透鏡的焦距與電壓關係 40 4.4 積分成像系統觀察與比較 41 4.4.1 使用液晶透鏡擷取影像單元 41 4.4.2 使用液晶透鏡還原3D影像 43 4.4.3 可視角與方位視差 44 4.4.4 不連續線對於影像品質的影響 48 第五章 結論與未來展望 50 5.1 結論 50 5.2 未來展望 50 參考文獻 52

    [1] 陳鴻興 編審, "顯示器色彩工程學," p.2-6, 全華圖書, (2011)
    [2] Y. P. Huang et al., "Development and researches of real 3D display technologies," 光學工程 第九十八期, 1-8, (2007)
    [3] 陳鴻興 編審, "顯示器色彩工程學," p.13-14, 全華圖書, (2011)
    [4] J. H. Park, K. Hong and B. Lee, "Recent process in three-dimensional information processing based on integral imaging," Appl. Opt. 48, H77-H94, (2009)
    [5] J. Wang, X. Xiao, H. Hua and B. Javidi, "Augmented reality 3D displays with micro integral imaging," J. DISP. TECHNOL. 11, 889-893, (2015)
    [6] 許哲儒, "電控式圓孔型液晶透鏡之光學特性隨玻璃層厚度變化之影響及不連續線問題解決方法之研究," 國立成功大學光電科學與工程研究所碩士論文, 中華民國九十八年七月
    [7] 松本正一‧角田市良 合著, "液晶之基礎與應用," 國立編譯館, 中華民國九十四年八月
    [8] Mouquinho A, Petrova K, Barros M T, and Sotomayor J. New Polymer Networks for PDLC Films Application, New Polymers for Special Applications, Chapter 5: 139-164. (2012)
    [9] J. Cao and B. J. Beren, "Theory of polarizable liquid crystals:Optical birefringence," J. Chem. Phys. 99, (1993)
    [10] F. C. Frank, "On the theory of liquid crystals," Faraday SOC. 25, p.19, 1958
    [11] M. Ye, B. Wang, T. Takahashi and S. Sato, "Properties of variable-focus liquid crystal lens and its application in focusing system," Opt. Rev. 14,173-175, (2007)

    [12] H. W. Ren et al., "Liquid crystal lens with large focal length tunability and low operating voltage," Opt. Express. 15, 11328, (2007)
    [13] 張繼鴻, "發展一可用電壓調控焦距的液晶元件," 私立中原大學應用物理研究所碩士論文, 中華民國九十二年六月
    [14] M. Ye and S. Sato, "Optical properties of liquid crystal lens of any size," Jpn. J. Appl. Phys. 41, 571-573, (2002)
    [15] Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Opt. Master. 21, 643-646, (2002)
    [16] M. Ye, B. Wang and S. Sato, "Driving of liquid crystal lens without disclination line occurring by applying in-plane electric field," Jpn. J. Appl. Phys. 42, 5086-5089, (2003)
    [17] C. H. Kuo, W. C. Chien, C. T. Hsieh, C. Y. Huang, J. J. Jiang, Y. C. Li, M. F. Chen, Y. P. Hsieh, H. L. Kuo and C. H. Lin, "Influence of pretilt angle on disclination lines of liquid crystal lens," Appl. Opt. 43, 4269-4274, (2012)
    [18] C. J. Hsu and C. R. Sheu, "Preventing occurrence of disclination line in liquid crystal lenses with a large aperture by means of polymer stabilization," Opt. Express. 19, 14999-15008, (2011)
    [19] F. Okano et al., "Three-dimensional video system based on integral photography," Opt. Eng. 38, p.1072, (1999)
    [20] C. Jang, C. K. Lee, J. Jeong, G. Li, S. Lee, J. Yeom, K. Hong and B. Lee, "Recent progress in see-through three-dimensional displays using holographic optical elements," Appl. Opt. 55, A71-A85, (2016)
    [21] J. Kim, S. W. Min and B. Lee, "Viewing region maximization of an integral floating display through location adjustment of viewing window," Opt. Express. 15, 13023-13034, (2007)
    [22] S. G. Park, J. Y. Hong, C. K. Lee and B. Lee, "Real-mode depth-fused display with viewer tracking," Opt. Express. 23, 26710-26722, (2015)
    [23] Z. Xiangjie, L. Cangli, Z. Dayong and L. Yongquan, "Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab," Appl. Opt. 51, 3024-3030, (2012)
    [24] J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi and S. H. Lee, " Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer-stabilized vertical alignment liquid crystal displays," J. Phys. D: Appl. Phys. 44, 325104, (2011)
    [25] J. S. Jang and B Javidi, "Three-dimensional synthetic aperture integral imaging," Opt. Lett. 38,1144-1146, (2002)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE